Riboswitch RNAs: Sensing metabolic signals with RNA transcripts

Tina Henkin
Microbiology, The Ohio State University

(November 16, 2009 2:30 PM - 3:30 PM)

Riboswitch RNAs: Sensing metabolic signals with RNA transcripts

Abstract

Direct sensing of a physiological signal by a nascent RNA transcript has emerged recently as a common mechanism for regulation of gene expression in bacteria. RNAs of this type, termed "riboswitches," interact with the cognate regulatory signal. This interaction can modulate the structure of the nascent transcript, which in turn can determine whether the RNA folds into the helix of an intrinsic terminator, resulting in premature termination of transcription. Similar RNA rearrangements mediate translational regulation by sequestration of the ribosome binding site; in this case, regulation can occur by interaction of the effector with either the nascent RNA or the full-length transcript. We have identified several systems of this type, including the T box system, which monitors the charging ratio of a specific tRNA, the S box and SMK box systems, which respond to S-adenosylmethionine (SAM), and the L box system, which responds to lysine. Each class of riboswitch RNA recognizes its signal with high specificity and an affinity appropriate to the in vivo pools of the effector. Characterization of the RNA-effector interaction in these systems has provided new information about how different classes of effectors are recognized, and about the impact of these regulatory mechanisms on the cell.