Workshop 7: Stem Cells, Development, and Cancer

(April 13,2015 - April 17,2015 )

Organizers


Heiko Enderling
Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute
Thomas Hillen
Mathematical and Statistical Sciences, University of Alberta
John Lowengrub
Mathematics, University of California, Irvine

Most tissues are hierarchically organized into lineages. A lineage is a set of progenitor-progeny relationships within which progressive changes in cell character occur. Typically, lineages are traced back to a self-perpetuating stem cell (SC), and end with a postmitotic terminal cell. One of the most exciting recent developments in the field of cancer biology is the recognition that lineage progression continues to occur in tumors. In particular there is an increasing body of evidence that like normal tissues, tumor cells that have the potential for unlimited self-renewal give rise in large numbers to cells that lack this potential - the so-called cancer stem cell hypothesis. By focusing for so many years on the majority cell populations in tumors, and not on the rarer cancer stem cells (cancer initiating cells), scientists and clinicians may have missed out on opportunities to understand, diagnose and treat the processes in cancer that matter most. Further, there is increasing evidence that cell stemness may be a function of the local environment rather than being a predetermined property of a cell. What are the consequences of this plasticity in cell behavior? Other important open questions in the field include: What cell types within the normal tissues are capable of being the cells of origin for tumors? What is the relationship between normal tissue stem cells and tumor-initiating cells (e.g., cancer stem cells)? Which signaling and other regulatory networks are altered in tumors relative to the normal tissues, and how do they function within the tumor? Finally, there is growing evidence that therapies aimed at the major cell types in tumors may sometimes make things worse, by leading to an expansion in the fraction of cancer stem cells. How can this be avoided? This workshop will address these and other questions through discussions among mathematical and computational modelers and experimentalists. In particular, the strong connections between normal development, tumor growth and the use of novel treatment strategies will be discussed.

Monday, April 13, 2015
Time Session
Tuesday, April 14, 2015
Time Session
Wednesday, April 15, 2015
Time Session
Thursday, April 16, 2015
Time Session
Friday, April 17, 2015
Time Session
Name Email Affiliation