CTW: Uncertainty, Sensitivity and Predictability in Ecology: Mathematical Challenges and Ecological Applications

(October 26,2015 - October 30,2015 )


Jennifer Dunne
Chair of Faculty and V. P. for Science, Santa Fe Institute
Alan Hastings
Department of Environmental Science and Policy, University of California, Davis
Andrew Morozov
Mathematics, University of Leicester

Uncertainty underlines almost every problem in mathematical ecology, and understanding its implications leads to substantial new mathematical challenges. Issues of uncertainty arise particularly in the structure of models, as reflected by the choice of state variables and model functions, uncertainty in parameters, initial conditions, etc. Uncertainty can greatly affect the determination of the current ecosystem state (e.g., stochastic versus deterministic description) and hence prediction of its dynamics. In ecological models uncertainty can be a real nuisance due to the phenomenon known as model sensitivity: models can be sensitive to the mathematical formulations of the constituent functions. This structural sensitivity can substantially reduce predictability of models. Whereas parameter-based sensitivity methods are now relatively well-developed, the mathematical framework to investigate structural sensitivity, when the entire function is unknown, is in its early stage and this represents a major challenge both in mathematics and ecology. In particular, there is a strong need for reliable mathematical tools to investigate structural sensitivity of biological models directly from data.

In addition, ecosystems are known to sometimes exhibit a sudden (catastrophic) regime shift, which is referred to as the tipping points, and this can be linked to a bifurcation in the model as a response to parameter changes (e.g., due to global climate changes). Development of robust techniques to identify reliable early warning signals of approaching catastrophic transition is a major challenge since the current methods are not always reliable and could result in false alarms, which can be very costly.

One of the goals of the ecosystem management is to estimate the risk of undesirable events. Coping with uncertainty (e.g., by providing the minimal required amount of information about the system) is therefore crucial to enable ecosystem managers to make the right decision in order to guarantee that the risk of undesirable event will not exceed the critical level. Lack of information about underlining processes calls into question the assumption that classical optimal control theory will always be successful. More research is needed to develop the mathematical framework for ecosystem management, in particular looking for an optimal balance between models complexity and their predictive power under a given level of uncertainty.

The main goal of the workshop is to bring together applied mathematicians, theoretical ecologists, empiricists and statisticians in order to address the above raised issues related to ecosystem understanding, modelling, and management to cope with uncertainty

Monday, October 26, 2015
Time Session
Tuesday, October 27, 2015
Time Session
Wednesday, October 28, 2015
Time Session
Thursday, October 29, 2015
Time Session
Friday, October 30, 2015
Time Session
Name Email Affiliation