
Reverse engineering discrete dynamical systems from data sets

with random input vectors

Winfried Just∗

April 25, 2006

Abstract

Recently a new algorithm for reverse engineering of biochemical networks was devel-
oped by Laubenbacher and Stigler. It is based on methods from computational algebra
and finds most parsimonious models for a given data set. We derive mathematically
rigorous estimates for the expected amount of data needed by this algorithm to find
the correct model. In particular, we demonstrate that for one type of input parame-
ter (graded term orders), the expected data requirements scale polynomially with the
number n of chemicals in the network, while for another type of input parameters (ran-
domly chosen lex orders) this number scales exponentially in n. We also show that for
a modification of the algorithm, the expected data requirements scale as the logarithm
of n.

1 Introduction

Reverse engineering of biochemical networks is a central problem of systems biology. This
process can utilize data from a variety of sources [18]. Top-down approaches are based
on the observed network response to different inputs. For example, microarray data col-
lected on time series for selected knockout/overexpression experiments or environmental
perturbations of the wild-type network can be used for top-down reverse engineering of
gene regulatory networks.

A number of algorithms for top-down reverse engineering under a variety of modeling
paradigms have been proposed (see [7], [8], [9] for recent surveys). It would be very useful
to know which of these algorithms (or even which modeling paradigms) are most suitable
for the analysis of which kind of data sets. The greatest handicap in reverse engineering of
biochemical networks is that the problem tends to be heavily underdetermined, so that a
large number of network models are consistent with the data (see Section 4 for details). Any
reverse engineering algorithm must select one or a few of these feasible models according to
some criteria. Therefore, the perhaps most important criterion for usability of an algorithm

∗Mathematical Biosciences Institute, 250 Mathematics Building, 231 W 18th Ave, Columbus, OH 43210
and Department of Mathematics, Ohio University, Athens, OH 45701

1

is whether for a data set of given size it can be expected to select the correct model with
reasonably high probability.

In [17] and [21], Laubenbacher and Stigler developed a top-down reverse engineering
algorithm that is based on treating the network as a discrete dynamical system, obtained
by discretizing concentration levels of the participating chemicals to elements of a finite field.
This generalizes the familiar notion of Boolean dynamical systems [14] (where the field is F2)
and allows the use of advanced tools from computational algebra. Moreover, this approach
permits a strict mathematical definition of the most parsimonious model consistent with the
data, according to some chosen term order �, which is an input parameter. We will refer to
this algorithm as the LS-algorithm. Recently, a modification of the LS-algorithm has been
developed, implemented and tested [11]. We will refer to the latter as the LS-algorithm with
preprocessing.

The purpose of this note is to investigate the expected performance of these algorithms.
More specifically, we estimate the expected amount of data needed by these algorithms for
finding the correct model. In order to be able to derive mathematically rigorous estimates of
these data requirements, we assume that data have been collected on the system response
to randomly chosen concentration vectors. A detailed discussion of the appropriateness
of this assumption is included in Section 4. Under this assumption, we are able to give
upper and lower bounds for the expected data requirements of the LS-algorithm for the
most common types of input parameters, graded and lex term orders. We show that for a
randomly chosen graded term order, the expected data requirements scale as a polynomial
in the number n of chemicals in the network. For randomly chosen lex orders, the expected
data requirements of the LS-algorithm scale exponentially in n. In contrast, for the LS-
algorithm with preprocessing the expected data requirements scale logarithmically in terms
of n and are within the best known bounds for reverse engineering algorithms of discrete
dynamical systems.

Since our work is aimed primarily at finding ball-park estimates that could give useful
guidance for use of the algorithm and development of future refinements, we will state our
major technical results twice, both as a precise formula and as a more user-friendly estimate
in terms of the big-Oh notation.

The paper is organized as follows. In Section 2 we give a description of the LS-algorithm,
a mathematically rigorous formulation of the questions studied in this paper, as well as
the necessary background from abstract algebra. Section 3 contains our technical results.
Section 4 contains a summary and discussion of the main results proved in Section 3. The
reader who wishes to skip proofs during the first reading of this paper may proceed to
Section 4 right after Subsection 2.3.

2 Mathematical background

We will use the notation [n] for the set {1, . . . , n} of the first n positive integers, and Z+

for the set of all positive integers. The cardinality of a set X is denoted by |X|.

2

2.1 The LS-algorithm in a nutshell

The LS-algorithm attempts to reconstruct models for regulation of biochemical networks
(such as gene networks) from data such as time series of discretized concentration level
vectors. It works as follows:

• There are n chemical species (mRNA, proteins, or metabolites) in the network.

• The concentration level measurements for each species have been discretized to ele-
ments of a finite field F (typically Fp for some prime p).

• There are n input variables x1, . . . , xn that measure the concentration levels of the n
chemical species. They take values in F .

• There is one output variable y that also takes values in F . In [17] and [21], based on
one or several time series, this output variable is also one of the input variables for
the next time point. However, this assumption is not needed in general.

• Experimental data take the form of a set D = {< x̄(t), y(t) >: t ∈ [m]}, where
each x̄(t) = [x1(t), . . . , xn(t)] is the input vector of concentrations, and y(t) is the
measurement obtained in response to input x̄(t). The set of inputs will be denoted
by C = {x̄(t) : t ∈ [m]}.

• The standing assumption is that all experimental results will be consistent, that is,
the responses to the same input vector will be the same if we repeat an experiment.

• If the set C of data inputs is the set of all possible input vectors Fn, then there
exists exactly one polynomial htrue ∈ F [x1, . . . , xn] such that htrue(x̄(t)) = y(t) for
all t ∈ [m]. Thus if we could perform each of the |F |n possible experiments, then we
could completely characterize the system (network).

• The set IC = {h ∈ F [x1, . . . , xn] : ∀t ∈ [m] h(x̄(t)) = 0} of all polynomials that vanish
on all data inputs forms an ideal in F [x1, . . . , xn].

• We call a polynomial h ∈ F [x1, . . . , xn] a model for D if h(x̄(t)) = y(t) for all t ∈ [m].
The set of all models for D is the set htrue + IC .

• The LS-algorithm takes as input a data set D and a term order �, and outputs a
model of D.

• The LS-algorithm finds a “most parsimonious guess” of htrue by first constructing one
model h for D and then computing and returning the remainder h%G� under division
of h by a Gröbner basis G� of IC . If the data set is complete (i.e., if C = Fn), then
the algorithm is guaranteed to return htrue.

3

2.2 Some elementary facts about Gröbner bases

A monomial in the polynomial ring F [x1, . . . , xn] is an expression of the kind xα, where
α is a function from [n] into the set of nonnegative integers, called a multiexponent. This
notation should be interpreted as xα =

∏
i∈supp(α) x

α(i)
i . A term in a polynomial is an

expression of the kind axα, where xα is a monomial and a ∈ F\{0}. The support of α is
the set supp(α) = {i ∈ [n] : α(i) > 0}. The support of a polynomial h, denoted by supp(h),
is the union of the sets supp(α) for all terms axα of h.

In a finite field F we always have x|F | = x and hence we may ignore multiexponents α
with maxα ≥ |F |; from now on we will always assume that maxα < |F |. In particular, if
we work in F2, then we can identify multiexponents with their support sets.

Every ideal I in F [x1, . . . , xn] has sets of generators called Gröbner bases, which will
be defined below. Division of a polynomial h by all polynomials in a Gröbner basis G
yields a unique remainder h%G. In the literature, the remainder h%G is often called the
normal form (with respect to G) of h. This remainder has the property that h− h%G ∈ I.
Moreover, if h−h′ ∈ I, then h%G = h′%G. The LS-algorithm computes a certain Gröbner
basis G and returns htrue iff htrue%G = htrue.

A term order is any well-order � on the set of monomials such that xα � xβ implies
xαxγ � xβxγ . We will slightly abuse notation and use the symbol � also on the set of
multiexponents; i.e., we will write α � β interchangably with xα � xβ and call both usages
“term order.”

An example of term orders are lex orders. Each lex(icographical) term order is given
by a variable order xπ(1) � . . . � xπ(n), where π : [n] → [n] is a permutation. The lex
order �π is then defined as follows: If α 6= β, let jd be the smallest j ∈ [n] such that
α(π(j)) 6= β(π(j)). Then

α �π β ↔ (α = β ∨ α(π(jd)) < β(π(jd))).

Another important class of term orders are the graded term orders. For a multiexpo-
nent α, let

∑
α =

∑
i∈[n] α(i). A term order � is called graded if

∑
α <

∑
β implies

α ≺ β.
With each term order � and ideal I one can associate a canonical Gröbner basis (a

so-called reduced Gröbner basis), which will be denoted here by G�(I).

2.3 The questions studied in this paper

The general question we are investigating is:

Question 1 If htrue is a given polynomial in F [x1, . . . , xn] and � is a term order taken
by the LS-algorithm as input, how much data do we need on average so that we can expect
the LS-algorithm to return htrue? Equivalently, how large does the set C of data inputs on
average need to be so that we can expect htrue%G�(IC) = htrue?

4

Since most regulatory functions in biochemical networks have relatively small support
relative to the total number of chemicals in the network [4], we will be especially interested
in Question 1 for htrue whose support has cardinality bounded by some constant.

In order to give precise meaning to the above question we need to define suitable random
variables. Our general framework in this note will be the following: The letter h will always
denote a polynomial in F [x1, . . . , xn]. Then there exists exactly one data set of maximal
size such that h = htrue for this data set; it will be denoted by Dmax. Now we imagine an
experimenter who randomly samples data inputs x̄(t) from Fn and takes measurements y(t).
We will assume that the underlying distribution of data inputs is the uniform distribution
on Fn and the sampling allows replacement. Thus our (extremely well-funded) experimenter
will produce an infinite sequence of data points D̄ =<< x̄(t), y(t) >: t ∈ Z+ > with y(t) =
h(x̄(t)) for all t. Let D̄h denote the probability space of all possible such sequences. If we do
not wish to specify h, we will work with the probability space D̄ =

⋃
h∈F [x1,...,xn] D̄h with the

uniform distribution (more precisely, the product measure of of the uniform distribution on
single-point data sets). For each positive integer m we let Dm = {< x̄(t), y(t) >: t ∈ [m]}
and Cm = {x̄(t) : t ∈ [m]}. Note that with probability one there will be an m such that
Dm = Dmax = Dm′ and Cm = Cm′ = Fn for all m′ > m. Thus for sufficiently large m, the
LS-algorithm will return htrue.

Let S be a finite nonempty set of term orders together with a probability distribution.
We will be interested in the cases where S is the set L of all lex orders with the uniform
distribution, the set G of all graded term orders with the uniform distribution1, or S = {�}
for a fixed term order �.

Our experimenter now has two principally different ways of analyzing the data: In a
Type 1 Analysis, the experimenter randomly picks a term order � from S and analyzes
all data sets Dm by running the LS-algorithm with input �. In a Type 2 Analysis, the
experimenter randomly and independently picks a term order �m for each m and analyzes
data set Dm by running the LS-algorithm with input �m. We say that a Type 1 or Type 2
analysis returns a polynomial h at step m if the LS-algorithm returns h when run on Dm

with the corresponding term order.

Definition 2 Let S be a set of term orders and let h ∈ F [x1, . . . , xn]. We define a random
variable λh,S on D̄h as the smallest number m such that a Type 1 Analysis returns h at
step m, a random variable κh,S on D̄h as the smallest number m such that a Type 2 Analysis
returns h at step m, and a random variable νh,S on D̄h as the smallest number m such that
there exists �∈ S so that a Type 1 Analysis that uses � returns h at step m.

Strictly speaking, the above random variables are only defined on a subset of D̄h of mea-
sure one, but this does not impact our results in any way, so we will ignore this technicality
in the remainder of this paper. Note that in the definition of κh,S and λh,S we assume
random choices of term orders; whereas in the definition of νh,S we assume that the optimal
�∈ S is used for the analysis.

1Formally, G is an infinite set, but since we are restricting our attention to multiexponents α with
max α < |F |, we can treat this set as finite.

5

Question 1 translates into our new terminology as follows:

Question 3 Given a finite set S of term orders and a polynomial h ∈ F [x1, . . . , xn], find
estimates of min λS , min κh,S , min νh,S , E(λh,S), E(κh,S), E(νh,S).

Proposition 4 Let h be any polynomial in F [x1, . . . , xn] and let S be a set of term orders.
Then min λh,S = min κh,S = min νh,S .

Proof: Immediate from the definition. �

It also follows immediately from Definition 2 that νh,S(D̄) ≤ κh,S(D̄), λh,S(D̄) for all
D̄ ∈ D̄h, and hence E(νh,S) ≤ E(κh,S), E(λh,S). It is perhaps also intuitively clear that
E(κh,S) ≤ E(λh,S), but the formal proof is not entirely straightforward, so we include it for
completeness.

Proposition 5 Let h be any polynomial in F [x1, . . . , xn] and let S be a set of term orders.
Then E(κh,S) ≤ E(λh,S).

Proof: Let h,S be as above. For a given term order �, let Gm
� denote the reduced Gröbner

basis for ICm constructed from �. Fix D̄ ∈ D̄h. Define a random variable ξD̄ on S as
follows:

ξD̄(�) = min {m : h%Gm
� = h}.

Let S̄ = {S̄ =<�m: m ∈ Z+ >: ∀m �m ∈ S}. For D̄ ∈ D̄h and S̄ ∈ S̄ we let
m(S̄, D̄) = min {m : ξD̄(�m) ≤ m}. Note that both E(λh,S) and E(κh,S) can be computed
as:

E =
∑

D̄∈D̄h

Pr(D̄)
∑
S̄∈S̄

Pr(S̄)m(S̄, D̄). (1)

The difference is that in the definition of E(κh,S) we assume the product probabil-
ity measure on S̄, whereas in the definition of E(λh,S) all nonconstant sequences have
probability zero. However, note that for any given � ∈ S and any m, the probability
Pr(�m =�) = Pr(�) does not depend on which of these two measures we consider.

We can rewrite sum (1) as follows:

E = 1 +
∑

D̄∈D̄h

Pr(D̄)
∑
�∈S

∑
m∈Z+

∑
{S̄∈S̄:�m =�}

Pr(�m =� &m(S̄, D̄) > m), (2)

which can be written as:

E = 1 +
∑

D̄∈D̄h

Pr(D̄)
∑
�∈S

Pr(�)
∑

m∈Z+

∑
{S̄∈S̄:�m =�}

Pr(m(S̄, D̄) > m| �m =�). (3)

6

Now note that

Pr(m(S̄, D̄) > m| �m =�) =
= Pr(ξD̄(�1) > 1 & . . . & ξD̄(�m−1) > m− 1 & ξD̄(�) > m) ≤ Pr(ξD̄(�) > m).

(4)

In the calculation of E(λh,S) only constant sequences have positive probability, and thus
the inequality in equation (4) turns into an equality; whereas in the calculation of E(κh,S)
the inequality may sometimes be strict. Since Pr(ξD̄(�) > m) is always either 0 or 1 and
does not depend on the rest of the sequence, the result follows. �

2.4 More facts about Gröbner bases

Let h = a1x
α1 + · · ·+a`x

α` ∈ F [x1, . . . , xn] be a polynomial with all coefficients aj 6= 0, and
let � be a fixed term order. The leading term of h is the term ajx

αj such that xαs ≺ xαj

for all s ∈ [`]\{j}; the corresponding monomial xαj is called the leading monomial. A basis
(set of generators) G for an ideal I is a Gröbner basis for I with respect to � iff for every
f ∈ I there exists g ∈ G such that the leading term of f is divisible by the leading term
of g. It can be shown that for every term order � and every ideal I there exists a unique
reduced Gröbner basis G�(I) for I with respect to �. We will not need the formal definition
of when a Gröbner basis is reduced; it suffices to know that it is uniquely determined by
I and �. We will often write G� instead of G�(I) when I is implied by the context. A
monomial xα is a standard monomial for a Gröbner basis G for I with respect to a term
order � iff xα is not the leading monomial of any f ∈ I. From this definition we can easily
observe the following.

Proposition 6 Let G be any Gröbner basis, let xα be a standard monomial for G, and
assume that β is such that β(i) ≤ α(i) for all i ∈ [n]. Then xβ is also a standard monomial
for G.

Given a set C = {x̄(t) : t ∈ [m]} of data inputs and polynomials h, h1, . . . , h` ∈
F [x1, . . . , xn], we say that h is a linear combination over C of h1, . . . , h` if there exist
constants a1, . . . , a` ∈ F such that h(x̄) = a1h1(x̄) + · · ·+ h`(x̄) for all x̄ ∈ C. The notions
of linear dependence and linear independence over C are defined accordingly. The phrase
“over C” will be omitted if C is specified by the context. The following facts can be found
in any standard text on Gröbner bases, such as [5].

Lemma 7 Let C be a set of data inputs and let G be any Gröbner basis for IC . Then the
set of standard monomials for G has cardinality |C|.

Proposition 8 Let h ∈ F [x1, . . . , xn] and let G be a Gröbner basis for an ideal IC with
respect to a given term order �.
(i) The set of standard monomials is linearly independent, and the remainder h%G is a
linear combination of standard monomials for G.
(ii) In particular, h%G = h iff h is a linear combination of standard monomials for G.
(iii) If xα is the leading monomial of h and xβ is the leading monomial of h%G, then
xβ � xα, and equality occurs iff xα is a standard monomial.

7

Definition 9 A linear combination of monomials dep = a1x
α1 + · · · + a`x

α` will be called
a dependency if all aw 6= 0. We say that a set of data inputs C removes dependency dep if
there exists x̄ ∈ C such that dep(x̄) 6= 0.

Of course, a dependency is the same thing as a nonzero polynomial in F [x1, . . . , xn].
However, we will use this word in order to imply that all coefficients are presumed to be
nonzero or to draw attention to its removal/nonremoval by a certain data set.

Corollary 10 Let C be a set of data inputs and let G be any Gröbner basis for IC . Then
(i) Any monomial xα is a standard monomial for G iff xα%G = xα.
(ii) If h = a1x

α1 + · · · + a`x
α` is a dependency, then h%G = h iff xαw%G = xαw for all

w ∈ [`].

Proof: Parts (i) and (ii) are a consequence of Proposition 8(i),(ii) since linear combinations
of linearly independent monomials are unique. �

Lemma 11 Let xα be a monomial in F [x1, . . . , xn], let C be set of data inputs, let � be a
term order, and and let G = G�(IC).
(i) If xα is a standard monomial for G, then C removes all dependencies in which xα is the
leading term.
(ii) If xα is not a standard monomial, then xα−xα%G is a dependency that is not removed
by C.

Proof: Point (i) is immediate from the definition of a standard monomial. Point (ii) follows
from the fact that xα − xα%G is an element of I. �

Lemma 12 Let Cm = {x̄(t) : t ∈ [m]} be a set of data inputs, let G be a Gröbner basis
for ICm−1, let dep = a1x

α1 + · · · + a`x
α` be a dependency with leading term a1x

α1 that
is not removed by Cm−1 but is removed by Cm. Then {x̄(m)} removes the dependency
xα1 − xα1%G.

Proof: Wlog we may assume that a1 = −1 (in the sense of F , i.e., a1 + 1 = 0). Consider
dep∗ = −xα1 +a2(xα2%G)+· · ·+a`(xα`%G). Then dep−dep∗ is a sum of elements of ICm−1 ,
and since dep is an element of ICm−1 , so is dep∗. Thus {x̄(m)} removes dep∗. Moreover,
all monomials of dep∗ other than xα1 are standard monomials for G. Thus dep∗ + xα1

and xα1%G are two linear combinations of standard monomials that take the same values
on Cm−1. Since standard monomials for G are linearly independent over Cm−1, it follows
that dep∗ = −(xα1 − xα1%G), and we conclude that {x̄(m)} removes the dependency
xα1 − xα1%G. �

Let D̄ =<< x̄(t), y(t) >: t ∈ Z+ >∈ D̄ be a sequence of data points, and let � be
a fixed term order. The Gröbner basis for G�(ICm) will be denoted by Gm

� . We say that
xα becomes a standard monomial at step m if xα is a standard monomial for Gm

� , but xα

8

is not a standard monomial for Gm−1
� . The number m such that xα becomes a standard

monomial at step m will be denoted by m�(α)(D̄) or simply m(α) if D̄, � are implied by
the context. By Lemma 7, at each step m at most one xα becomes a standard monomial
at step m.

If we pick � randomly from some set S of term orders, then m(α) becomes a random
variable that also depends on the particular choice of �. In order to specify the probability
space S from which � is drawn, we will use the notation mS(α) in this case.

Lemma 13 Let h = a1x
α1 + · · ·+ a`x

α` be a dependency.
(i) If � is a term order and D̄ ∈ D̄, then the LS-algorithm with inputs Dm and � returns h
iff h is a model of Dm and m�(αw)(D̄) ≤ m for all w ∈ [`].
(ii) Let S be a set of term orders. Then

min
D̄h

λh,S = min
D̄

max{mS(αw) : w ∈ [`]}

and
E(λh,S) = E(max{mS(αw) : w ∈ [`]}).

Proof: Part (i) follows immediately from Corollary 10(ii). By definition, m�(α)(D̄) de-
pends only on the sequence of data inputs for D̄ and not on which particular D̄h the data
sequence belongs to. Thus part (ii) is a consequence of part (i). �

Let us investigate under which conditions m�(α) = m holds. By Lemma 11(ii), for
every xγ that is not a standard monomial for Gm−1

� , the polynomial xγ − (xγ%Gm−1
�) is a

dependency that is not removed by Cm−1. We get the following characterization.

Lemma 14 Let α be a multiexponent, let � be a term order, and let D̄ ∈ D̄. Assume xα

is not a standard monomial for Gm−1
� . Then m�(α)(D̄) = m iff both of the following hold:

(i) x̄(m) removes the dependency xα − (xα%Gm−1
�).

(ii) x̄(m) does not remove any of the dependencies xγ − (xγ%Gm−1
�) for γ ≺ α.

Proof: First note that in point (ii) we may restrict our attention to γ ≺ α such that xγ is
not a standard monomial, because if xγ is a standard monomial, then xγ − (xγ%Gm−1

�) is
simply the zero polynomial.

By Lemma 11, point (i) is a necessary condition for xα to become a standard monomial
at step m.

Now let us show that points (i) and (ii) together are sufficient conditions for xα to become
a standard monomial at step m. Suppose not. Then xα − (xα%Gm

�) is a dependency that
is not removed by x̄(m), and hence it must be different from xα− (xα%Gm−1

�) by point (i).
No two different linear combinations of standard monomials for Gm−1

� can be identical on
Cm−1, hence xα−(xα%Gm

�) contains a standard monomial xγ for Gm
� that is not a standard

monomial for Gm−1
� . But since xα is the leading monomial of xα− (xα%Gm

�), we must have

9

γ ≺ α. Since we have already seen that point (i) is necessary, x̄(m) removes the dependency
xγ − (xγ%Gm−1

�), which contradicts point (ii).
It remains to show that if xα becomes a standard monomial at step m, then point (ii)

holds. Suppose not, and let β ≺ α be the �-smallest counterexample. Then both point (i)
and point (ii) hold for β in the role of α, and thus xβ becomes a standard monomial at
step m. Since we already know (from Lemma 7) that at most one monomial becomes a
standard monomial at step m, it follows that xα does not become at standard monomial at
this step. �

3 Results

3.1 Bounds for min λh,S

Definition 15 Let K ⊆ [n] and let C = {x̄(t) : t ∈ [m]} be a set of data inputs. We say
that C fully resolves K if for every f : K → F there exists t ∈ m such that xi(t) = f(i) for
all i ∈ K. We say that C weakly resolves K if for every f : K → {0, 1} there exists t ∈ m

such that x
|F |−1
i (t) = f(i) for all i ∈ K (i.e., xi(t) 6= 0 iff f(i) = 1).

Note that if F = F2, then C fully resolves K iff C weakly resolves K. If a set of data
inputs C fully resolves a set of variables K, then |C| ≥ |F ||K|; if C weakly resolves a set of
variables K, then |C| ≥ 2|K|.

Lemma 16 Let h = a1x
α1 + · · ·+ a`x

α` ∈ F [x1, . . . , xn], and let K be such that supp(h) ⊆
K ⊆ [n].
(i) Suppose that C is a set of data inputs that fully resolves K. If � is a lex order with
xi ≺ xj whenever i ∈ K and j /∈ K, then h%G�(IC) = h.
(ii) Let C = {x̄(t) : t ∈ [m]} be a set of data inputs that fully resolves K and such that
xi(t) = 0 for all i ∈ [n]\K, t ∈ [m]. If G is any Gröbner basis for IC , then h%G = h.
(iii) Let C = {x̄(t) : t ∈ [m]} be a set of data inputs that weakly resolves K and such that
xi(t) = 0 for all i ∈ [n]\K, t ∈ [m] and xi(t) ∈ {0, 1} for all i ∈ K, t ∈ [m]. If max αw ≤ 1
for all w ∈ [`] and if G is any Gröbner basis for IC , then h%G = h.

Proof: We will write F [K] as shorthand for F [{xi : i ∈ K}]. For the proof of part (i),
note that for every lex order � as in the assumption, every w ∈ [`] and every xβ ≺ xαw

we have supp(β) ⊆ K. By Proposition 8(iii), each of the dependencies xαw − xαw%G�
is a polynomial in F [K]. If C fully resolves K, then no nonzero polynomial in F [K] with
max β < |F | for every of its terms xβ can be zero on all points in C. In particular, C removes
all dependencies in F [K]. It follows that each monomial of h is a standard monomial, and
thus h%G�(IC) = h.

For the proof of part (ii), note that if C is as in the assumptions, then supp(β) ⊆ K for
any standard monomial xβ for G, and hence xαw − xαw%G is again a polynomial in F [K]
for every monomial xαw of h. Now the same argument as in the proof of part (i) works.

10

For the proof of part (iii), let C be as in the assumptions, and let � be any term order.
First note that since the data inputs take only values from the set {0, 1}, we have xr

i = xi

for all r ≥ 1, and it follows that if α is a multiexponent with max α > 1 and β takes the
value 1 on all i ∈ supp(α) while it takes the value 0 outside of supp(α), then xα − xβ ∈ IC .
Similarly, if supp(α) is not a subset of K, then xα ∈ IC . Thus such xα are the leading
terms of elements of IC and cannot be standard monomials. Since |C| = 2|K|, it follows
from Lemma 7 that the set of standard monomials for any Gröbner basis for IC is the set
SM = {xα : supp(α) ⊆ K & max α ≤ 1}. Since the assumption of part (iii) tells us that h
is a linear combination of terms in SM , we conclude that h%G = h. �

Corollary 17 Let h ∈ F [x1, . . . , xn] and let S be any set of term orders. Then min λh,S ≤
|F ||supp(h)|.

Proof: If C is as in the assumption of part (ii) of Lemma 16, then |C| = |F ||K|, for
K = supp(h) and we can find D̄ ∈ D̄ with Cm = C for m = |C| = |F ||supp(h)|. �

Lemma 18 Let h = xα be a monomial, and let K = supp(α). Assume moreover that
α(i) = |F | − 1 for all i ∈ supp(α). If C is any set of data inputs and G is any Gröbner
basis for IC with h%G = h, then C fully resolves K.

Proof: Let xα be as in the assumption. For each f ∈ FK let depf =
∏

i∈K

∏
a∈F\{f(i)}(xi−

a). Then depf is a dependency with leading term xα. This dependency is removed by C iff
there is a point x̄(t) ∈ C with xi(t) = f(i) for all i ∈ K. Thus if xα%G = xα, that is, if xα

is a standard monomial of G, then C must contain, for every f ∈ FK , a point that agrees
with f on K. This shows that C fully resolves K. �

Note that if F = F2, then the second assumption of Lemma 18 is always satisfied. If
F 6= F2, then the set C as in the assumption of Lemma 16(iii) does not fully resolve K, and
it follows that this second assumption cannot be dropped.

For h as in Lemma 18, the lower bound of Corollary 17 is sharp.

Corollary 19 Let h ∈ F [x1, . . . , xn], and let S be a set of term orders. If h contains a
monomial xα such that α(i) = |F | − 1 for all i ∈ supp(α), then min λh,S = |F ||supp(α)|.

Proof: This follows from Lemma 18 and Lemma 13(ii). �

3.2 Data sets with high resolution

The previous section indicates how crucial it is for the workings of the LS-algorithm that the
set of data inputs resolve the support set of the function htrue. This observation motivates
the following definition.

Definition 20 (i) Let K ⊆ [n]. We define a new random variable ξ on D̄ as follows:

11

ξK(D̄) = min {m ∈ Z+ : Cm fully resolves K}.

(ii) Let k be a positive integer. We say that a set C of data inputs has resolution k if C
fully resolves every subset of [n] of size k. We define random variables ρk on D̄ as

ρk(D̄) = min {m ∈ Z+ : Cm has resolution k}.

Note that if a data set has resolution k, then it also has resolution j for all 1 ≤ j < k.

Lemma 21 Let K ⊆ [n], and let |K| = k. Then

|F |k k ln |F | < E(ξK) < |F |k (1 + k ln |F |).

Proof: Let D̄ ∈ D̄. We define a random variable ξj as follows:
ξ0 = 1.
For |F |k > j > 0 we let tj = ξ0 + · · ·+ ξj−1 and define
ξj = min {s : ∀t ≤ tj x̄(tj + s) � K 6= x̄(t) � K}.
Note that ξj is well defined except on a set of measure zero. One can think of ξj as

measuring the time it takes to sample a new possible behavior of x̄(t) � K, and of ξ as the
total time it takes until all possible behaviors of x̄(t) � K have been sampled. Thus

ξ =
|F |k−1∑

j=0

ξj , and it follows that E(ξ) =
|F |k−1∑

j=0

E(ξj).

Note that ξj has a geometric distribution with success probability |F |k−j
|F |k . Thus E(ξj) =

|F |k
|F |k−j

, and we get

E(ξ) =
|F |k−1∑

j=0

E(ξj) =
|F |k−1∑

j=0

|F |k

|F |k − j
= |F |k

|F |k−1∑
j=0

1
|F |k − j

= |F |k
|F |k∑
`=1

1
`
.

Since

k ln |F | = ln |F |k <

|F |k∑
`=1

1
`

< 1 + ln |F |k = 1 + k ln |F |,

the lemma follows. �

The following result can be found as Theorem 4.9 in [15] or in [16].

Lemma 22 Let k be a positive integer, let D̄ ∈ D̄ be randomly chosen, and let c ≥ 1 be a
constant. If m ≥ |F |k(k(ln n + ln |F |) + ln c), then the probability that Cm does not have
resolution k is less than 1

c .

12

Corollary 23 min ρk ≤ |F |kk(ln n + ln |F |).

Proof: This follows from Lemma 22 by letting c = 1. �

It turns out that E(ρk) is very close to min ρk.

Lemma 24
E(ρk) < |F |k(k(ln n + ln |F |) +

1
1− e−1

).

Proof: For a nonnegative integer j, let `j = |F |k(k(ln n+ln |F |)+j). We get the following
estimate for E(ρk):

E(ρk) ≤ |F |k(k(ln n + ln |F |) +
∞∑

j=0

(j + 1)Pr(`j ≤ ρk < `j+1)). (5)

Note that by changing its right-hand side to an equivalent form, equation (5) can be
written as follows:

E(ρk) ≤ |F |k(k(ln n + ln |F |) +
∞∑

j=0

Pr(`j ≤ ρk)). (6)

Applying Lemma 22 to the right-hand side of equation (6) we obtain:

E(ρk) ≤ |F |k(k(ln n + ln |F |) +
∞∑

j=0

Pr(`j ≤ ρk)) < |F |k(k(ln n + ln |F |) +
∞∑

j=0

1
ej

), (7)

and Lemma 24 follows. �

Recall that L denotes the set of all lex orders.

Theorem 25 Let h ∈ F [x1, . . . , xn] be such that |supp(h)| ≤ k. Then
(i)

E(νh,L) < |F |k (1 + k ln |F |).

(ii) If h = xα is a monomial such that α(i) = |F |−1 for all i ∈ supp(α) and if |supp(α)| = j,
then

|F |j (j ln |F |) < E(νh,L).

(iii)

E(κh,L) < |F |k (1 + k ln |F |) +
(

n

k

)
.

(iv) Suppose D̄ ∈ D̄h and m is on the order of ω(k|F |k). If the data set Dm is analyzed
by running the LS-algorithm on the order of ω(nk) times with randomly and independently
chosen lex orders, then the probability that the algorithm returns h at least once will approach
one.

13

Proof: Part (i) follows immediately from Lemmas 21 and 16(i). Part (ii) follows from
Lemmas 21 and 18.

For the proof of point (iii), let K = supp(h). Recall that in a Type 2 Analysis, the
LS-algorithm is run on Dm with input parameter �m, and κh,L is the first m for which this
procedure returns h when �m is randomly drawn from L. By Lemma 16(i), κh,L is less
than or equal to the waiting time for the first success, where a “success” occurs at step m
if Cm fully resolves K and �m is such that xi ≺m xj whenever i ∈ K and j /∈ K. For
m > ξK , the conditional probability of success is equal to 1

(n
k)

. Thus the time we need to

wait for the first success from the moment that Cm fully resolves K (that is, from ξK(D̄))
is bounded by a random variable ζ with geometric distribution and success probability in
a single trial of 1

(n
k)

. Thus κh,L ≤ E(ξK) + E(ζ). Since E(ζ) =
(
n
k

)
, point (iii) follows from

Lemma 21.
The essentially same argument can be used to derive part (iv). �

3.3 Random graded orders

Recall that a term order � is called graded if
∑

α <
∑

β implies α ≺ β, and that G denotes
the set of all graded term orders with uniform distribution. In this section we derive bounds
for E(λh,G) and E(νh,G).

Theorem 26 Let � be a graded term order, let h ∈ F [x1, . . . , xn] be a polynomial, let xα

be the leading monomial of h, and let k =
∑

α. Then

E(λh, {�}) ≤ |F |k
k∑

`=0

(
n

`

)
(min{|F − 1|, k + 1− `})`.

In particular,

E(λh,G) ≤ |F |k
k∑

`=0

(
n

`

)
(min{|F − 1|, k + 1− `})`.

Corollary 27 Let h be a polynomial with leading term xα and let k =
∑

α. If n >> |F |,
then E(λh,G) is O(|F |knk).

Proof: If n is larger relative to |F |, then the sum in Theorem 26 is dominated by its last
term |F |k

(
n
k

)
, which is O(|F |knk). �

In order to prove Theorem 26 we need some preliminaries.

Lemma 28 Let � be any term order. Suppose D̄ is a randomly chosen data sequence from
D̄ such that xα is not a standard monomial for Gm−1

� = G�(ICm−1), and let v̄ ∈ Fn. Then

Pr({x̄(m)} removes dependency xα−(xα%Gm−1
�)| ∀i ∈ [n]\supp(α) xi = vi) ≥ |F |−|supp(α)|.

14

Proof: Let depv̄ be the polynomial obtained by replacing any occurrence of xi for i 6∈
supp(α) in the polynomial xα − (xα%Gm−1

�) by the corresponding value vi. Then depv̄

becomes a nonzero polynomial in F [{xi : i ∈ supp(α)}], and hence there exists at least one
vector z̄ ∈ F supp(α) such that depv(z̄) 6= 0. Since our probability distribution on the input
vectors was assumed uniform, Lemma 28 follows. �

Recall that m�(α) denotes the minimum m such that xα becomes a standard monomial
with respect to the Gröbner basis G�(ICm).

Let � be any term order, and let A be an initial segment of the set of multiexponents
ordered by �; i.e., such that if α ∈ A and β � α, then also β ∈ A. We define a random
variable ηA,� on D̄ as follows:

ηA,� = max{m�(β) : β ∈ A}.

Lemma 29 Let � be any term order, and let A be an initial segment of set of multiexpo-
nents ordered by � such that |supp(α)| ≤ k for all α ∈ A. Then

E(ηA,�) ≤ |A| · |F |k.

Proof: Let us look at a sequence D̄ of experiments in the following way: Consider the
m-th experiment a “success” if α(m) is the �-smallest α such that xα was not a standard
monomial for Gm−1

� . For any positive integer M , let σM be the waiting time for the M -th
success. Since A is an initial segment we have E(ηA,�) ≤ E(σ|A|).

Moreover, since the support of any multiexponent in A has at most k elements, it
follows from Lemma 28 and Lemma 14 that the success probability in each experiment is at
least |F |−k. By the well-known formula for the expected waiting time for the M -th success
we get E(σ|A|) ≤ |A| · |F |k, and Lemma 29 follows. �

Proof of Theorem 26: Let � be a graded term order, let h, α, k be as in the assumption,
and let A = {β : β � α}. Then A is an initial segment of � that contains all monomials
of h. If β � α and � is graded, then |supp(β)| ≤

∑
β ≤

∑
α. Moreover, if |supp(β)| = `,

then for every i ∈ supp(β) we have 1 ≤ β(i) ≤ |F − 1| by the definition of supp(β), and we
also must have β(i) ≤ 1− |supp(β)|+

∑
α because

∑
β ≤

∑
α. Thus

|A| ≤

P
α∑

`=0

(
n

`

)
(min{|F − 1|, 1− ` +

∑
α})`,

and it follows from Lemma 29 that the right-hand side of the equations in Theorem 26 is
an upper bound for the expected number of data points needed for all monomials of h to
become standard monomials. Now the result follows from Lemma 13(ii). �

Let π : [n] → [n] be a permutation. We can naturally extend π to a permutation of the
set of all terms orders defined by:

α π(�) β iff α ◦ π � β ◦ π.

15

Similarly, we can extend π to a permutation of all polynomials in F [x1, . . . , xn] defined by:

π(a1x
α1 + · · ·+ a`x

α`) = a1x
α1◦π + · · ·+ a`x

α`◦π,

the set of all input vectors:
π(x̄)i = xπ(i),

and also to a permutation of data sequences:

π({< x̄(t), y(t) >: t ∈ Z+}) = {< π(x̄(t)), y(t) >: t ∈ Z+}.

Lemma 30 Let � be a term order, let π be a permutation of [n], let D̄ a data sequence,
and let α be a multiexponent. Then

m{�}(α)(D̄) = m{π(�)}(α ◦ π)(π(D̄)).

Proof: This result should be intuitively clear, because the simultaneous application of π
to everything in sight amounts just to a consistent relabeling of the variables in all relevant
objects for the calculation of m(α). For a formal proof, one can use Lemma 14 to show that
xα is a standard monomial for G�(ICm) iff xα◦π is a standard monomial for Gπ(�)(Iπ(Cm)).
This is rather tedious but straightforward, and we will omit details. �

We say that a set S of term orders is invariant under permutations of the variables if
π(�) ∈ S whenever �∈ S and π is a permutation of [n]. Note that both the set G of all
graded term orders and the set L of all lex orders are invariant under permutations of the
variables.

Let us introduce a partial order relation on the set of all multiexponents as follows:
We write β E α iff there exists a permutation π : [n] → [n] such that π(β)(i) ≤ π(α)((i))
(equivalently, β(i) ≤ α(π(i))) for all i ∈ [n]. For example, if maxα = max β = 1, then
β E α iff |supp(β)| ≤ |supp(α)|. In general, β E α iff for |{i : β(i) > j}| ≤ |{i : β(i) > j}|
for all nonnegative integers j. We will write α ∼ β and say that α and β are permutation-
equivalent if β E α and α E β. Note that α ∼ β iff β = π(α) for some permutation π.

Lemma 31 Let α be a multiexponent and let S be a set of term orders with the uniform
probability distribution that is closed under permutations of variables and endowed with the
uniform probability distribution. Then E(mS(α)) ≥ 1

2 |{β : β E α}|.

Proof: Note that

E(mS(α)) =
∑
m>0

m Pr(|{β : mS(β) ≤ mS(α)}| = m) =
∑
β

Pr(mS(β) ≤ mS(α)). (8)

The second sum in equation (8) is taken over the set of all multiexponents, and the
probability is calculated in S. Since S is permutation-invariant, we must have Pr(mS(β) ≤

16

mS(α)) = 1
2 whenever α ∼ β and α 6= β. To see this, let π be a permutation of [n] such

that π(α) = β. By Lemma 30, m{�}(α)(D̄) > m{�}(β)(D̄) iff m{π(�)}(π(α))(π(D̄)) <
m{π(�)}(π(β))(π(D̄)). Since the probability distribution on D̄ was assumed uniform, the
assumptions on S imply that Pr(mS(α) < mS(β)) = Pr(mS(α) > mS(β)) = 1

2 .
Similarly, when β / α, then by Proposition 6 we must have Pr(mS(β) ≤ mS(α)) > 1

2 .
The lemma follows by ignoring the contributions of all other β to the second sum. �

Theorem 32 Let S be a set of term orders that is closed under permutations, with uniform
probability distribution. Let h ∈ F [x1, . . . , xn] and let xα be the leading monomial of h. Then

E(λh,S) ≥ 1
2
|{β : β E α}|.

In particular,

E(λh,S) ≥ 1
2

|supp(α)|∑
k=0

(
n

k

)
.

Proof: The first inequality follows from Corollary 31 since S is closed under permutations,
and λh,S ≥ mS(α) by Lemma 13(i).

The second inequality follows from the first one and the fact that if |supp(β)| ≤ |supp(α)|
and maxβ ≤ 1, then β E α. �

Since the set G of graded term orders is closed under permutations, we get the following:

Corollary 33 If h ∈ F [x1, . . . , xn] has leading monomial xα with k = |supp(α)|, then
E(λh,G) = Ω(nk). If F = F2 and k is fixed, then E(λh,G) = Θ(nk).

Proof: The first part follows from the fact that for small k the sum in Theorem 32 is of
order Ω(nk). The second part follows from the first part and Corollary 27. �

Note that if F = F2, then the second part of Theorem 32 is the best possible estimate
that one can derive from the first part. For other fields and multiexponents that take larger
values than one, the estimate can be slightly improved. However, as Corollary 27 shows,
even for larger F the growth of E(λh,G) will still be bounded by a polynomial in n, and we
will not attempt to derive sharper bounds for the general case here.

The proof of Theorem 32 heavily relies on the fact that we pick � independently of D̄.
What if we can optimize � for a given data sequence D̄? We will show that if F and α are
fixed and n →∞, then we still get a polynomial lower bound.

Theorem 34 Let h ∈ F [x1, . . . , xn] and let xα be the leading monomial of h. Then for
sufficiently large n we have

E(νh,G) ≥ 1
4

(
n

(
∑

α)− 1

)
.

17

Proof: Let k = (
∑

α) − 1. We will be interested only in the case where k > 0. For
the purpose of this proof, an antichain will be a collection of pairwise disjoint sets of
cardinality k each. We need a lemma.

Lemma 35 Let Q be the set of all subsets of [n] of size k and suppose J ⊂ Q. Let z = |J |
|Q| .

Then there exists an antichain A such that |A ∩ J | ≥ z · bn
k c.

Proof: Let P be the set of all pairs < A, q >, where A is an antichain of size bn
k c and q ∈ Q.

Let A be the collection of all antichains of this maximal size, and let N be the number of
such antichains that contain a fixed q ∈ Q (this number is independent of q). Then

|P | = |A| · bn
k
c = |Q| ·N.

Let PJ = {< A, q >∈ P : q ∈ J}. Then, on the one hand,

|PJ | = |J | ·N = z · |Q| ·N = z · |P |.

On the other hand,
|P | =

∑
A∈A

|A ∩ J |,

and it follows that for some A ∈ A we must have |A ∩ J | ≥ z · |A| ≥ z · bn
k c. �

Now let us derive the lower bound. Fix a graded term order �∗, and let B = {γ :
|supp(γ)| = k & max γ = 1}. Then |B| =

(
n
k

)
. Let m ≤ 1

2

(
n
k

)
, and let Cm−1 be a set of

data inputs of size at most m. Let G = G�∗(ICm−1), and let J ⊆ B be the set of all γ ∈ B

such that xγ is not a standard monomial for G. Then |J | ≥ |B|
2 , and by Lemma 35 we find

a set A ⊂ J of cardinality ≥ 0.5 · bn
k c such that the supports of the multiexponents in A are

pairwise disjoint. Fix such A. By Lemma 28, for each γ ∈ A, the conditional probability
that dependency xγ− (xγ%G) is removed by a randomly chosen new data point x̄(m) given
any arbitrary values for x̄(m) on the set [n]\supp(γ) is at least |F |−k. Since these are
conditional probabilities, we are allowed to multiply, and it follows that the probability
Pnr that none of the dependencies xγ − (xγ%G) for γ ∈ A is removed by {x̄(m)} can be
estimated as:

Pnr ≤ (1− |F |−k)0.5·bn
k
c < e−zn, (9)

where z can be chosen arbitrarily close to 1
2k|F |k as long as n is sufficiently large.

Note that since �∗ was assumed to be graded, for all γ in B and for all monomials xβ

that occur in xγ − (xγ%G) we have
∑

β ≤ k, and the choice of k implies that xβ ≺ xα for
all such β and every graded term order �. Of course, if � is different from �∗, then xγ may
no longer be the leading monomial of xγ−(xγ%G), but we have just shown that the leading
monomial xβ (with respect to �) of xγ − (xγ%G) will satisfy xβ ≺ xα. Thus by Lemma 12,
if {x̄(m)} removes dependency xγ − (xγ%G), then {x̄(m)} will also remove the dependency

18

xβ − (xβ%G�(ICm−1)) for some β ≺ α. By Lemma 11 and inequality (9) it follows that
given an arbitrary set of data inputs Cm−1 of size at most m− 1 and for randomly chosen
x̄(m), the probability that there exists any graded order � such that m{�}(α) = m is less
than e−zn for z as above.

By the definition of ν and Lemma 13(i), the preceding paragraph shows that if m = 1
2

(
n
k

)
,

then

Pr(νh,G ≤ m) < me−zn < nke−zn, (10)

where z is a positive constant. Clearly, the right-hand side of inequality (10) ap-
proaches 0 as n →∞; in particular, for sufficiently large n we will have

Pr(νh,G ≤
1
2

(
n

k

)
) <

1
2
.

Now Theorem 34 follows from the choice of k. �

Corollary 36 Let h ∈ F [x1, . . . , xn], let xα be the leading monomial of h, and let k =
∑

α.
Then E(νh,G) is Ω(nk−1).

3.4 E(λ) for random lex orders

Recall that each lex order is given by a variable order xπ(1) � . . . � xπ(n), where π : [n] → [n]
is a permutation. The lex order �π is then defined as follows: If α 6= β, let jd be the smallest
j ∈ [n] such that α(π(j)) 6= β(π(j)). Then

α �π β ↔ (α = β ∨ α(π(jd)) < β(π(jd))).

Thus randomly picking an element � from L amounts to randomly picking the permu-
tation π of [n] for which �=�π.

Throughout this section, let r be a constant such that 0 < r < 1. The next proposition
follows immediately from the definition of a lex order:

Proposition 37 If min{π(i) : i ∈ supp(α)} < (1− r)n and β is such that π(i) ≥ (1− r)n
for all i ∈ supp(β), then β ≺π α.

Now let π be a fixed permutation of [n]. For any positive integer t, let V +(t) = {i ∈
[n] : π(i) ≥ (1 − r)n & xi(t) 6= 0}. For every positive integer m, let OLDm be the event
that V +(m) is contained in V +(t) for some t < m, and let NEWm be the complement of
OLDm.

Lemma 38 If min{π(i) : i ∈ supp(α)} < (1− r)n and NEWm occurs, then m�π(α) 6= m.

19

Proof: Let β be any multiexponent such that supp(β) = V +(m), and let G` = G�π(IC`
)

for ` ∈ {m − 1,m}. Then x̄(m)β 6= 0. Thus xβ 6∈ ICm , and hence xβ%Gm is a nonzero
linear combination of standard monomials xγ for Gm such that γ �π β. On the other hand,
if NEWm occurs, then for all t < m there is at least one i ∈ supp(β) with xi(t) = 0, and
hence x̄(t)β = 0. The latter implies that xβ ∈ ICm−1 , hence xβ%Gm−1 = 0 and xβ cannot
be written as a nonzero linear combination of standard monomials xγ for Gm−1. It follows
that α(m) = γ for some γ with γ �π β. By Proposition 37, we have γ �π β ≺π α, and thus
m(α) 6= m by Lemma 14. �

Lemma 39 Let m be a positive integer. Then

Pr(OLDm) ≤ (m− 1)e
− brnc(|F |−1)

|F |2 .

Proof: We have:

Pr(OLDm) ≤
m−1∑
t=1

Pr(V +(m) ⊆ V +(t))

≤ (m− 1)(1− 1
|F |

|F | − 1
|F |

)brnc

≤ (m− 1)e
− brnc(|F |−1)

|F |2 .

(11)

�

Theorem 40 Let h be any nonconstant polynomial, let 1 > q > 0, and let r = q
2 . Then for

sufficiently large n:

Pr(λh,L ≤
√

qe
brnc|F |−1

2|F |2) ≤ q.

Proof: Let xα be a nonconstant monomial in h and let m =
√

qe
brnc|F |−1

2|F |2 . It follows from
inequality (11) that

Pr(∃` ≤ m OLD`) ≤
m∑

`=1

(`− 1)e
− brnc(|F |−1)

|F |2 <
m2

2
e
− brnc(|F |−1)

|F |2 =
q

2
. (12)

Let A denote the event that our randomly chosen lex order �π is such that min{π(i) :
i ∈ supp(α)} ≥ (1− q

2)n, and let B be the complement of A. Note that Pr(A) ≤ q
2 + o(1).

Moreover, Lemma 38 implies that Pr(m�π(α) > m|B) < q
2 . Thus Pr(m�π(α) > m) ≤

Pr(m�π(α) > m|B)(1 − Pr(A)) + Pr(A) ≤ q
2(1 − Pr(A)) + q

2 + o(1). Now the theorem
follows from Lemma 13(ii). �

Corollary 41 There exists a constant c > 1 such that E(λh,L) is Ω(cn) for every noncon-

stant h ∈ F [x1, . . . , xn]. In particular, this is true for c = e
|F |−1

4|F |2 .

Proof: Let q = 1
2 in Theorem 40. �

20

3.5 A modification of the LS-algorithm

In the previous section we found that when run with a randomly chosen lex order, the
LS-algorithm is expected to need exponentially many data points before it converges to the
correct solution. In contrast, by Theorem 25(i), very few data points suffice if the lex order
is optimally chosen. Here we will explore a modification of the LS-algorithm that tries to
first find a near optimal lex order for running the algorithm.

Any lex order is uniquely determined by its variable order xπ(1) � xπ(2) � · · · � xπ(n).
The idea for choosing a near optimal lex order is to choose a variable order in such a way
that the variables that htrue is likely to depend on come last. If the data are concentration
levels of chemical species in a biochemical network, one can try to use prior biological
knowledge to identify those among the species that are likely candidates for regulating the
concentration level xi, and rank them last when running the LS-algorithm for finding the
regulatory function hi of xi. This approach has been tried in [17] and [21]. Alternatively, one
could base the choice of variable order directly on the given data set. Here we will investigate
one algorithm for doing the latter. A version of this algorithm has been implemented and
successfully tested on some data sets [11].

Definition 42 Let D = {< x̄(t), y(t) >: t ∈ m} be a data set. A subset L ⊆ [n] is called a
dependency set for D if

∀t1, t2 ∈ m (x̄(t1) � L = x̄(t2) � L → y(t1) = y(t2)).

In other words, L ⊆ [n] is a dependency set for D iff there exists a model h for D such
that supp(h) ⊆ L.

The LS-algorithm with preprocessing

1. Find a dependency set L for D of minimum size.

2. Choose a variable order that puts the elements of L last.

3. Run the LS-algorithm on the lex order associated with the variable order found in
Step 2.

The above description does not entirely specify the algorithm and leaves room for further
improvement. For example, prior biological knowledge can be incorporated in step 2 to
choose the most promising among all lex orders permitted by it. But the description given
here will allow us to prove an estimate of the algorithm’s performance on random data sets.
This estimate will be valid for any specific implementation of the algorithm.

Suppose h ∈ F [x1, . . . , xn] and let K = supp(h). If D is a data set for which h is a
model, then K is a dependency set for h, but it does not need to be the case that K is a
dependency set of minimum cardinality. Even if K is of the smallest possible size, there
may be another dependency set L of the same size. This cannot happen though if D has
resolution 2|K|.

21

Lemma 43 Let D = {< x̄(t), y(t) >: t ∈ [m]} be a data set, let K be a dependency set
for D of size k, and assume that K is minimal in the sense that no proper subset of K is a
dependency set for D. Assume D has resolution 2k− `. Then K = L for every dependency
set L for D with |L| ≤ k and |L ∩K| ≥ `.

Proof: Let D, K be as in the assumptions. Assume towards a contradiction that there
exists a dependency set L for D such that |L| ≤ k, |K ∩ L| ≥ `, and K\L 6= ∅. Choose
xi ∈ K\L. By minimality of K, there are x̄(t1), x̄(t2) ∈ K such that xj(t1) = xj(t2) for all
j ∈ K\{i} and y(t1) 6= y(t2). Note that this implies xi(t1) 6= xi(t2).

Since D has resolution 2k − ` and |K ∪ L| ≤ 2k − `, there exist t3, t4 ∈ [m] such that
both x̄(t3) � K = x̄(t1) � K and x̄(t4) � K = x̄(t2) � K, and also x̄(t3) � L = x̄(t4) � L. Then
y(t3) = y(t1) 6= y(t2) = y(t4), which contradicts the assumption that L is a dependency set
for D. �

By setting ` = 0 in the above lemma we get:

Corollary 44 Let D be a data set with resolution 2k, and let K be a minimal dependency
set for D of size k. Then K is the unique dependency set for D of size ≤ k.

Example 45 Let k > 1 be an integer, and let n ≥ 2k. Then there exist a data set D and
subsets K, L ⊆ [n] such that:
(i) K ∩ L = ∅,
(ii) |K| = |L| = k,
(iii) Both K and L are minimal dependency sets for D,
(iv) D has resolution 2k − 1.

Proof: Fix k, n as in the assumptions, and let K, L be disjoint subsets of [n] of size k each.
Let

D = {< x̄, y >: y =
∑
i∈K

xi =
∑
j∈L

xj}, (13)

where the sums are taken with respect of the addition operation in F . It is immediate
from the definition of D that both K and L are dependency sets for D. Moreover, these
dependency sets are minimal, because any proper subset of K or L leaves out at least one
variable which can be used to make y any desired value. Similarly, suppose J is a subset
of [n] of size 2k − 1 and f : J → F is any given function. We can construct < x̄, y >∈ D
such that x̄ agrees with f on J because at least one variable index i in either K or L is not
in J , and this index allows us to make the two sums in (13) equal. This shows that D has
resolution 2k − 1. �

The above example shows that, in general, the assumption of Corollary 44 that D have
resolution 2k cannot be weakened. However, it is possible to relax this condition if the data
set D admits models of a certain kind.

22

Definition 46 A function f : Fn → F is called canalizing if there exists a variable xi

called a canalizing variable, a value u ∈ F called a canalizing value, and a value v ∈ F
called the canalized value such that f(x̄) = v whenever xi = u.

Definition 46 generalizes the well-known definition of canalizing, or forcing, Boolean
functions [20], [13], [10], [19], [12]. Canalizing variables may not be unique; for example,
all monomials xα are canalizing (with canalizing and canalized value 0) in every variable
xi such that α(i) > 0. The canalizing value is not in general unique; however, if F = F2,
then the canalizing value is unique unless the function depends on at most one variable.
It was shown in [10] that a great majority of Boolean gene regulatory functions that have
been experimentally characterized are canalizing functions with several canalizing variables.
We will show that for data sets D that are generated by such regulatory functions h the
conclusion of Corollary 44 remains valid even if D has resolution that is somewhat smaller
than 2k. Actually, we will prove this for a wider class of functions than the ones that are
canalizing in several variables.

Definition 47 Let h : Fn → F . We say that h is iteratively canalizing with canalizing
variable sequence ī =< i1, . . . i` >, canalizing value sequence ū =< u1, . . . , u` >, and
canalized value sequence v̄ =< v1, . . . , v` > if for all r ∈ [`] and all x̄ ∈ Fn:

(xir = ur & ∀j < r xij 6= uj) → f(x̄) = vr.

We say that h is iteratively canalizing for ` variables if there exist sequences ī, ū and v̄ of
length ` such that h is iteratively canalizing with canalizing variable sequence ī, canalizing
value sequence ū, and canalized value sequence v̄.

Clearly, every function is iteratively canalizing in ` = 0 variables, and any function that
is canalizing in ` variables is also iteratively canalizing in ` variables. But the notion of
being iteratively canalizing is much broader. For example, consider the Boolean function
f(x1, x2) = x1x2 + x1. For this function, x2 is not a canalizing variable, therefore f is
canalizing only in one variable. However, f is iteratively canalizing with canalizing variable
sequence < 1, 2 >. Note that < 2, 1 > is not a canalizing variable sequence for f .

Theorem 48 Let D = {< x̄(t), y(t) >: t ∈ [m]} be a data set and let K be a minimal
dependency set for D of size k. Assume moreover that D has a model h that is iteratively
canalizing with canalizing variable sequence ī =< i1, . . . i` > such that {i1, . . . , i`} ⊆ K. If
D has resolution max{2k − `, k + 1}, then K ⊆ L for every dependency set L for D with
|L| ≤ k. In particular, K is the unique dependency set for D of size ≤ k.

Proof: Suppose D,K, h, ī are as in the assumptions of Theorem 48, let ū =< u1, . . . , u` >
be a canalizing value sequence for h and ī, and let v̄ =< v1, . . . , v` > be the corresponding
canalized value sequence. Let L be a dependency set for D of size at most k. We show
that L = K. If |K ∩ L| ≥ `, then the result follows from Lemma 43. So assume towards

23

a contradiction that |K ∩ L| < `. Let r ≤ ` be the smallest positive integer j such that
ij /∈ L. We distinguish two cases.

Case 1: There exist t1, t2 with y(t1) 6= y(t2) and xij (ts) 6= uj for all j < r and s ∈ {1, 2}.
Then at most one of the values y(t1), y(t2) can be vr; assume wlog that y(t1) 6= vr.

Since D has resolution k + 1, we find t3 such that x̄(t3) � L = x̄(t1) � L and xir(t3) = ur.
Since L is a dependency set, the former implies that y(t3) = y(t1) 6= vr. On the other
hand, the latter implies y(t3) = vr by the choice of vr and the definition of being iteratively
canalizing. We have reached a contradiction.

Case 2: For all t1, t2 such that xij (ts) 6= uj for all j < r and s ∈ {1, 2} we have y(t1) = y(t2).
In this case the set Kr = {ij : j < r} will be a dependency set for D, because for all

x̄(t) with xij (t) = uj for some j < r the value y(t) will be determined by the iteratively
canalizing property, and for all other x̄(t) the value y(t) will be fixed by the assumptions
of Case 2. But Kr is a proper subset of K, which contradicts our assumption that K was
minimal. �

For h ∈ F [x1, . . . , xn] let us define a new random variable λ+
h on all D̄ ∈ D̄h as the

smallest m such that (an implementation of) the LS-algorithm with preprocessing returns h
when run on ICm .

Theorem 49 Let h be such that |supp(h)| ≤ k. Let 0 ≤ ` ≤ k be such that h is iteratively
canalizing in ` variables from supp(h), and let j = max{2k − `, k + 1}. Then

E(λ+
h) ≤ |F |j (j (ln n + ln |F |) +

1
1− e−1

).

In particular, for any h with |supp(h)| ≤ k we have

E(λ+
h) ≤ |F |2k (2k (ln n + ln |F |) +

1
1− e−1

).

Proof: By Lemma 24 it suffices to show that E(λ+
h) ≤ E(ρj). So let h, k, `, j, D̄ be as in

the assumption, and assume that m ≥ ρj(D̄), i.e., assume that Dm has resolution j. Then
K = supp(h) is a dependency set for Dm that is iteratively canalizing in ` variables. Thus
the assumptions of Theorem 48 are satisfied. It follows from this theorem that the first
step of the LS-algorithm with preprocessing returns L = supp(h). Thus in Step 2 of the
algorithm we will pick a variable order that puts the variables in supp(h) last, and in the
third step we will work with the associated lex order �. Moreover, our assumption on m
implies that Dm fully resolves supp(h). Now the theorem follows from Lemma 16(i). �

Corollary 50 Let h be such that |supp(h)| ≤ k. Let 0 ≤ ` ≤ k be such that h is iteratively
canalizing in ` variables from supp(h), and let j = max{2k − `, k + 1}. Then E(λ+

h) is
O(|F |j j ln n). In particular, for any h with |supp(h)| ≤ k the expected value E(λ+

h) is of
order O(|F |2k 2k ln n).

24

4 Summary of results and discussion

It is by now commonplace that reverse engineering problems of biochemical networks tend
to be vastly underdetermined. Within the framework of modeling a regulatory function by
a function h : Fn → F , the precise meaning of this phrase is the following: If D is a data set
of size m, then there exist |F ||F |n−m distinct models consistent with h. Reverse engineering
algorithms will typically report just one of these models, and the perhaps most important
quality measure for comparing such algorithms is how quickly they converge to the correct
model of D, that is, how much data are needed on average before the algorithm finds the
correct solution. Note that if the algorithm were just to pick a solution randomly from
the set of all possible solutions, the expected amount of data needed for its convergence
would grow superexponentially in the number of variables n. This is clearly unacceptable
in practice, and any usable algorithm will need to perform much better for h that are likely
to be the true models of our data sets.

Since the true regulatory functions in biochemical networks tend to have relatively
small support [4], we are especially interested in the convergence rate for h with small
support. Moreover, one would like to know which kind of term order one should use in
the LS-algorithm to maximize the probability of convergence to the true model with this
property. The results we have obtained in this paper give some guidelines, at least under
the assumption that the set of data inputs is sufficiently random.

1. If h is any polynomial that depends on at most k variables, then there exists a data
set D with |D| ≤ |F |k such that for every term order � the LS-algorithm will return h
(Corollary 17).

2. If h contains a monomial of maximum multidegree that depends on at most k variables
and D is any data set such that for some term order � the LS-algorithm returns h,
then |D| ≥ |F |k (Corollary 19).

3. Let h = a1x
α1 + · · · + a`x

α` be a polynomial with max{
∑

αw : w ∈ [`]} = k and
max{supp(αw) : w ∈ [`]} = j, and let D̄ ∈ D̄h be a random sequence of data for
which h is a model. Then the expected number of data points needed before the
LS-algorithm that is run with a randomly chosen graded term order returns h is on
the order of at least Ω(nj) (Corollary 33) and at most O(|F |knk) (Corollary 27). The
expected number of data points needed before the LS-algorithm that is run with an
optimally chosen graded term order returns h is on the order of at least Ω(nk−1)
(Corollary 36).

4. Let h be a nonconstant polynomial that depends on at most k variables and let D̄ ∈ D̄h

be a random sequence of data for which h is a model. Then:

(a) The expected number of data points needed before the LS-algorithm with an
optimally chosen lex order � returns h is on the order of O(|F |kk ln |F |). (The-
orem 25(i)).

25

(b) The expected number of data points needed before the LS-algorithm with an
randomly chosen lex order � returns h is on the order of Ω(cn) for some constant
c > 1. (Corollary 41). Moreover, the number of data points needed for the
LS-algorithm to return h with probability > q for any fixed positive q grows
exponentially in n (Theorem 40).

5. Let h ∈ F [x1, . . . , xn] be a polynomial that depends on at most k variables. Then the
expected number of data points needed before the LS-algorithm with preprocessing
returns h is on the order of O(|F |2k 2k ln n). Moreover, if h is iteratively canalizing
in ` of its variables, then this expected number of data points needed for convergence
is on the order of O(|F |j j ln n), where j = max{2k − `, k + 1} (Corollary 50).

Recall that the LS-algorithm was designed to find most parsimonious models for the
data. One can interpret items 1 and 2 above as bounds on the number of variables and the
multidegree of monomials that such most parsimonious models may contain. Items 3 and 4
have practical significance for the choice of input parameter �. Item 3 implies that if we
expect the true model to depend on at most k variables and to contain only monomials xα

with
∑

α ≤ k, and if we have on the order of nk data points, then running the LS-algorithm
with a graded term order may be a safe bet, and it really does not matter all that much
which particular graded term order we use.

Unfortunately, in applications to molecular biology, the number n of variables will typ-
ically be larger than the number m of data points, possibly by one or more orders of
magnitude. In this case, item 3 implies that we should not expect the algorithm to return
any nonlinear models when a graded term order is used; regardless of which particular
graded term order is chosen as the input. Thus if we are looking for nonlinear models for
such data sets, using lex orders might be a better strategy, and item 4(a) shows that this
strategy can work even with very few data points, as long as we choose a near optimal
lex order. However, item 4(b) shows that a random choice of lex order will make it very
unlikely that the algorithm returns the true regulatory function, unless the number of data
points were exponentially large.

These pitfalls can be avoided by judiciously choosing a lex order � based on prepro-
cessing. Item 5 shows that versions of the LS-algorithm with preprocessing, such as in [11],
are expected to need only O(|F |2|supp(h)| |supp(h)| ln n) data points for convergence to the
correct model h. This is the same order of magnitude as the best known upper bound
derived in [2] and [15] for related algorithms. For h that are iteratively canalizing in at least
some variables (a property that should be expected at least of gene regulatory functions by
the results of [10]), we found an even better convergence rate.

All our results about expected values are based on the assumption of random data
inputs. Clearly, the data inputs of real experiments on in vivo response of a biochemical
network to certain conditions will not be “random,” for at least two reasons: First of all,
most of the |F ||F |n possible concentration vectors are likely to be lethal and would not elicit
an in vivo response. Second, a real experimenter will typically have limited control over the

26

choice of the input vectors. She may be able to collect time series data (in which case the
input vector for the next measurement is dictated by the network itself), or to knock out or
overexpress a few genes in the network, but not a substantial proportion of them. In view
of this, we must carefully consider the question to what extent our results are of relevance
to the analysis of real biomolecular data.

First of all, except for quantum effects, nothing in nature is truly “random.” A random
coin flip becomes a deterministic event if we can measure the initial position and momentum
of the coin with sufficient precision. Assumptions of randomness are usually just a way of
formalizing our ignorance about the conditions that influence an outcome. While it seems
clear that most of the theoretically possible data sets could not be produced in an actual
wetlab, it is not presently known what the true distribution of feasible sets of data inputs is,
and even if it were known, this distribution would likely depend on the particular network
that is being studied. Our assumption of a uniform distribution of sets of data inputs is
just a way of formalizing this ignorance. Since no other distribution is supported by the
current state of our knowledge, if we want to study expected performance of any algorithm
at all, the assumption of a uniform distribution of data inputs is practically forced upon us.

It does follow from the above though that one should exercise great care when interpret-
ing our results. It would be inappropriate to conclude that all our estimates of expected
values remain strictly valid for the unknown distribution of data sets that biologists will
want to analyze in the near future. However, we believe that our results are of practical
relevance if one is willing to treat them as ball-park figures. For example, we have shown
that running the LS-algorithm with graded or randomly chosen lex orders is expected to
be inadequate for most data sets of realistic size. It would be very surprising indeed if
the actual distribution of real data sets would improve the expected performance of the
algorithm in these cases by orders of magnitude, and we believe that our results make a
solid case for the need of preprocessing.

Our most optimistic result, Theorem 49, does not require that the set of data inputs is
random, only that it has sufficient resolution. This suggests a clear recommendation: An ex-
perimenter who has already obtained a partial data set should plan subsequent experiments
in such a way as to maximize the expected resolution of the final data set. The question
of how to translate this general recommendation into specific guidelines as to which of the
possible knockout/overexpression experiments to perform suggests itself as a question of
future research (see also [1] for related work in a different framework). Another important
question for future research suggested by this result is whether and to what extent currently
feasible experimental procedures and properties of discrete dynamical systems place limita-
tions on the resolution of data sets. If not, then Theorem 49 should be directly applicable
to real data sets. If on the other hand there are limitations, then it is worth investigating
whether and how any observed tendencies towards limited resolution may themselves be
used to make inferences about the network.

Theorem 48 leads to a strict performance guarantee of the LS-algorithm with prepro-
cessing when the data set does have the required resolution. It is likely though that data sets
encountered in practical applications may “almost” have a reasonably high resolution, but

27

a few small subsets of the variable set will remain unresolved. Thus studying the expected
performance of the algorithm on such data sets is an important question for future research.
It should be noted that the strategy outlined in our version of the “LS-algorithm with pre-
processing” is not the only feasible way of choosing a promising term order. Suppose the
true model h has support of size k. By Theorem 25(iv), if we run the LS-algorithm on a
data set with random inputs of size ω(k|F |k) on the order of ω(nk) times with randomly
and independently chosen lex orders, then the probability that the algorithm returns h at
least once will approach one. This already reduces the number of candidate models from
superexponential to polynomial, and various strategies can be tried to extract a most likely
model or a most promising term lex order for the final run of the algorithm from these mod-
els. The former has been attempted in [17] and [21], where a majority or consensus criterion
was used and in [3], where the analysis of candidate models was based on the Deegan-Packel
index of power [6]. It should be of interest to compare the expected performance of such
alternative strategies of pre- or postprocessing with the one described in this this paper and
[11] on data sets that have “almost” high resolution.

In summary, the author believes that the results presented here give some guidance for
the use of the LS-algorithm and its refinements for the analysis of biochemical data. In
particular, they clearly demonstrate the value of preprocessing. The working biologist is
faced with a bewildering variety of modeling paradigms and algorithmic tools for network
data analysis. In order to choose the tool most appropriate for a given data set, one needs to
know how well a given tool is expected to perform. Clearly, there is a need for comparative
analysis of different algorithms and modeling paradigms. This paper contains such an
analysis for one of the available tools, the LS-algorithm. It is our hope that similar analyzes
for alternative algorithms will eventually equip biologists with a set of useful criteria for
choosing the tool that is most appropriate for analyzing a given data set.

Acknowledgements

This material is based upon work supported by the National Science Foundation under
Agreement No. 0112050 while the author was a visitor at the Mathematical Biosciences
Institute. The author wishes to thank Brandy Stigler and Jennifer Galovich for helpful
comments and the MBI for providing an excellent research environment.

References

[1] Akutsu, T., Kuhara, S., Maruyama, O., and Miyano, S. (1998). Identification of Gene
Regulatory Networks by Strategic Gene Disruptions and Gene Overexpressions. Proc.
9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’98), 695–702.

[2] Akutsu, T., Miyano, S., and Kuhara, S. (1999). Identification of genetic networks from
a small number of gene expression patterns under the Boolean network model. Pacific
Symp. Biocomput. 4, 17–28.

28

[3] Allen, E. E., Fetrow, J. S., Daniel, L. W., Thomas, S. J, and David, J. J. (2006).
Algebraic dependency models of protein signal transduction networks from time-series
data. J. theor. Biol. 238(2), 317–330.

[4] Arnone, M. I. and Davidson, E. H. (1997). The hardwiring of development: organization
and function of genomic regulatory systems. Develoment 124, 1851–1864.

[5] Cox, D., Little, J., and O’Shea, D. (1992). Ideals, varieties, and algorithms : an intro-
duction to computational algebraic geometry and commutative algebra. Springer-Verlag.

[6] Deegan J. and Packel E. (1978). A new index for simple n-person games. Int. J. Game
Theory 7, 113–123.

[7] De Jong, H. (2002). Modeling and Simulation of Genetic Regulatory Systems: A Liter-
ature Review. J. Comput. Biol. 9(1), 67–103.

[8] D’haseleer, P., Liang, S., and Somogyi, R. (2000). Genetic network inference: from
co-expression clustering to reverse engineering. Bioinformatics 16(8), 707–726.

[9] Gardner, T. S. and Faith, J. (2005). Reverse-engineering transcription control networks.
Physics of Life Reviews 2, 65–88.

[10] Harris, S. E., Sawhill, B. K., Wuensche, A., Kauffman, S., A model of transcriptional
regulatory networks based on biases in the observed regulation rules. Complexity 7(4),
(2002) 23–40.

[11] Jarrah, A., Laubenbacher, R., Stigler, B. and Stillman, M. (200?). Reverse-engineering
of polynomial dynamical systems. In preparation.

[12] Just, W., Shmulevich, I., and Konvalina, J. (2004). The number and probability of
canalizing functions. Physica D 197(3-4), 211–221.

[13] Kauffman, S. A. (1990). Requirements for Evolvability in Complex Systems: Orderly
Components and Frozen Dynamics. Physica D, 42, 135–152.

[14] Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evo-
lution. Oxford U Press.

[15] Krupa, B. (2002). On the Number of Experiments required to Find the Causal Structure
of Complex Systems. J. theor. Biol. 219, 257–267.

[16] Kleitman, D. J. and Spencer, J. (1973). Families of k-independent sets. Discrete Math.
6, 255–262.

[17] Laubenbacher, R. and Stigler, B. (2004). A computational algebra approach to reverse
engineering of gene regulatory networks. J. theor. Biol. 229, 523–537.

29

[18] Palsson, B. (2006). Systems Biology: Properties of Reconstructed Networks. Cambridge
U Press.

[19] Shmulevich, I., Lähdesmäki, H., Dougherty, E. R., Astola, J., and Zhang, W. (2003).
The role of certain Post classes in Boolean network models of genetic networks. Proc.
Natl. Acad. Sci. USA 100(19), 10734–10739.

[20] Stauffer, D. (1987). On Forcing Functions in Kauffman’s Random Boolean Networks.
J. Stat. Phys. 46(3-4), 789–794.

[21] Stigler, B. (2005). An Algebraic Approach to Reverse Engineering with
an Application to Biochemical Networks. Ph.D. Thesis, Virginia Tech.
http://scholar.lib.vt.edu/theses/available/etd-08252005-075644/

30

