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Abstract

Spatial heterogeneity, habitat connectivity, and rates of movement can have large impacts
on the persistence and extinction of infectious diseases. These factors are shown to determine
the asymptotic profile of the steady states in a frequency-dependent SIS epidemic model with
n patches in which susceptible and infected individuals can both move between patches. Patch
differences in local disease transmission and recovery rates characterize whether patches are low-
risk or high-risk, and these differences collectively determine whether the spatial domain, or
habitat, is low-risk or high-risk. The basic reproduction numberR0 for the model is determined. It
is then shown that when the disease-free equilibrium is stable (R0 < 1) it is globally asymptotically
stable, and that when the disease-free equilibrium is unstable (R0 > 1) there exists a unique
endemic equilibrium.

Two main theorems link spatial heterogeneity, habitat connectivity, and rates of movement to
disease persistence and extinction. The first theorem relates the basic reproduction number to the
heterogeneity of the spatial domain. For low-risk domains, the disease-free equilibrium is stable
(R0 < 1) if and only if the mobility of infected individuals lies above a threshold value, but for
high-risk domains, the disease-free equilibrium is always unstable (R0 > 1). The second theorem
states that when the endemic equilibrium exists, it tends to a spatially inhomogeneous disease-
free equilibrium as the mobility of susceptible individuals tends to zero. This limiting disease-free
equilibrium has a positive number of susceptible individuals on all low-risk patches and can also
have a positive number of susceptible individuals on some, but not all, high-risk patches. Sufficient
conditions for whether high-risk patches in the limiting disease-free equilibrium have susceptible
individuals or not are given in terms of habitat connectivity, and these conditions are illustrated
using numerical examples. These results have important implications for disease control.
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1 Introduction

Spatial heterogeneity, habitat connectivity, and rates of movement play important roles in dis-
ease persistence and extinction. Movement of susceptible or infected individuals can enhance or
suppress the spread of disease depending on the heterogeneity and connectivity of the spatial en-
vironment (see e.g., Castillo-Chavez and Yakubu 2001, 2002; Bolker and Grenfell 1995; Hess 1996;
Lloyd and May 2001; Salmani and van den Driessche 2006; Ruan to appear). Spatial heterogene-
ity can give rise to complex and surprising disease dynamics (Allen et al. 2003; Castillo-Chavez
and Yakubu 2001, 2002; Hess 1996; Lloyd and Jansen 2004; Wang and Zhao 2004). In numerical
investigations of a discrete-time, two-patch SIS (susceptible-infected-susceptible) epidemic model,
Allen et al. (2003) considered a case where, in the absence of movement, the disease persists in
only one of the two patches – a high-risk patch, where the patch reproduction number is greater
than one. When the patches are connected by susceptible and infective movement, an endemic
equilibrium is reached in both patches. But if the movement pattern is changed so that only
infected individuals disperse between the two patches a surprising result occurs. The disease does
not persist in either patch; the high-risk patch becomes empty and all susceptible individuals
eventually reside in the low-risk patch, where the patch reproduction number is less than one.
We investigate this latter phenomenon in a continuous-time SIS metapopulation model with n
patches that includes both high-risk and low-risk patches.

Disease spread in metapopulation models involving discrete patches has been investigated in
a variety of settings (Arino and van den Driessche 2006, 2003a, 2003b; Arino et al. 2005; Jin
and Wang 2005; Rvachev and Longini 1985; Salmani and van den Driessche 2006; Sattenspiel and
Dietz 1995; Wang and Mulone 2003; Wang and Zhao 2004). In a review article, Arino and van den
Driessche (2006) summarize some known results on disease dynamics in metapopulation models
with regard to existence and stability of disease-free and endemic equilibria. They develop a gen-
eral framework for movement of susceptible, exposed, infected, and recovered individuals (SEIRS
model) and define a mobility matrix, an irreducible matrix that defines the spatial arrangement
of patches and rates of movement between patches (see also Arino and van den Driessche 2003a,
2003b). Wang and colleagues studied uniform persistence and global stability of disease-free and
endemic equilibria in SIS metapopulation models (Jin and Wang 2005; Wang and Mulone 2003;
Wang and Zhao 2004).

Here, we formulate a frequency-dependent SIS metapopulation model consisting of n patches.
The spatial arrangement of patches, and rates of movement between patches, are defined by an
irreducible matrix. The spatial domain is characterized as low-risk or high-risk if the spatial
average of the patch transmission rates is less than or greater than the spatial average of the
recovery rates, respectively. Individual patches are also characterized as low-risk or high-risk if
the patch transmission rate is less than or greater than the patch recovery rate, which is equivalent
to the patch reproduction number being less than or greater than one, respectively. A unique
disease-free equilibrium is shown to exist and a basic reproduction number R0 is determined. If
R0 < 1, the disease-free equilibrium is shown to be globally asymptotically stable and if R0 > 1,
a unique endemic equilibrium is shown to exist.

Our two main theorems link spatial heterogeneity, habitat connectivity, and rates of movement
to disease persistence and extinction. The first theorem relates the basic reproduction number to
the heterogeneity of the spatial domain. It is shown that for low-risk domains, the disease-free
equilibrium is stable (R0 < 1) if and only if the mobility of infected individuals lies above a
threshold value. For high-risk domains the disease-free equilibrium is always unstable (R0 > 1).
The second theorem concerns the spatial heterogeneity in the limiting case where the mobility of
susceptible individuals approaches zero. We show that if R0 > 1, then the endemic equilibrium
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approaches a spatially inhomogeneous disease-free equilibrium which has a positive number of
susceptible individuals on all low-risk patches and no susceptibles on at least one of the high-risk
patches. These results have important implications for disease control. If the spatial environment
can be modified to include low-risk patches (i.e., low transmission rates or high recovery rates)
and if the movement of susceptible individuals can be restricted (e.g., quarantine), then it may
be possible to eliminate the disease.

1.1 The model

Let n ≥ 2 be the number of patches and Ω = {1, 2, . . . , n}. Consider the SIS patch model

dS̄j

dt
= dS

∑
k∈Ω

(LjkS̄k − LkjS̄j)−
βjS̄j Īj
S̄j + Īj

+ γj Īj , j ∈ Ω, (1.1a)

dĪj
dt

= dI

∑
k∈Ω

(LjkĪk − Lkj Īj) +
βjS̄j Īj
S̄j + Īj

− γj Īj , j ∈ Ω, (1.1b)

where S̄j(t) and Īj(t) denote the number of susceptible and infected individuals in patch j at time
t ≥ 0; dS and dI are positive diffusion coefficients for the susceptible and infected subpopulations;
Ljk represents the degree of movement from patch k into patch j; and βj and γj are nonnegative
constants that express the rate of disease transmission and recovery in patch j. Because S̄j Īj/(S̄j+
Īj) is a Lipschitz continuous function of S̄j and Īj in the open first quadrant, we extend its
definition to the entire first quadrant by defining it to be zero when at least one of S̄j = 0 or
Īj = 0 holds. We assume that

(A1) S̄j(0) ≥ 0 and Īj(0) ≥ 0 for j ∈ Ω, and
∑

j∈Ω

[
S̄j(0) + Īj(0)

]
> 0.

Let S̄ = (S̄j) and Ī = (Īj). Brauer and Nohel (1989) implies that a unique solution (S̄, Ī) of
(1.1) exists for all time. Let

N =
∑
j∈Ω

[
S̄j(0) + Īj(0)

]
(1.2)

be the total number of individuals in all patches at t = 0. By (A1), N is positive. Summing the
2n equations in (1.1) makes it clear that∑

j∈Ω

[
S̄j(t) + Īj(t)

]
= N, t ≥ 0. (1.3)

We will assume that the connectivity matrix L = (Ljk) satisfies

(A2) L is nonnegative, irreducible, and symmetric.

We shall say that a matrix A = (Ajk) is nonnegative (or positive) if all its elements are
nonnegative (or positive), in which case we will write A ≥ 0 (or A > 0). Similar comments apply
to vectors u = (uj). The symmetry assumption ensures that the per-capita rates of susceptible and
infected individuals entering patch j from patch k (dSLjk and dILjk) are equal to the per-capita
rates of individuals moving in the other direction (dSLkj and dILkj). Hence, in (1.1)

LjkS̄k − LkjS̄j = Ljk(S̄k − S̄j) and LjkĪk − Lkj Īj = Ljk(Īk − Īj).
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The irreducibility assumption implies that the system of patches considered as a directed graph
with patches as the vertices is strongly connected (Ortega 1987). Other characterizations of
irreducibility are given in Appendix A, and we will make use of these additional facts as needed.

We say that in a low-risk patch disease transmission occurs at a lower rate than disease recovery
when the number of infected individuals in that patch is very small. A high-risk patch is defined
in a similar manner. Let

H− = {j ∈ Ω : βj < γj} and H+ = {j ∈ Ω : βj > γj}

denote the set of these low-risk and high-risk patches, respectively. We assume that

(A3) H− and H+ are nonempty and H− ∪H+ = Ω.

Let R[j]
0 = βj/γj be the patch reproduction number for patch j ∈ Ω (we set R[j]

0 = ∞ when
γj = 0). Then R[j]

0 < 1 for low-risk patches (j ∈ H−) and R[j]
0 > 1 for high-risk patches

(j ∈ H+). It is well-known that the disease can persist in isolated high-risk patches but not in
isolated low-risk patches.

Let
Σβ =

∑
j∈Ω

βj and Σγ =
∑
j∈Ω

γj .

We say that Ω is a low-risk domain if Σβ < Σγ , but a high-risk domain if Σβ ≥ Σγ .
For an arbitrary patch j ∈ Ω, it will be convenient to define

Lj =
∑
k∈Ω

Ljk, L−j =
∑

k∈H−

Ljk, and L+
j =

∑
k∈H+

Ljk.

These sums denote the connectivity between patch j and all patches, all low-risk patches, and all
high-risk patches, respectively. The irreducibility of L implies that Lj > 0 for all j ∈ Ω.

1.2 The equilibrium problem

We will be primarily interested in equilibrium solutions of (1.1), i.e., solutions of

dS

∑
k∈Ω

Ljk(S̃k − S̃j)−
βjS̃j Ĩj

S̃j + Ĩj
+ γj Ĩj = 0, j ∈ Ω, (1.4a)

dI

∑
k∈Ω

Ljk(Ĩk − Ĩj) +
βjS̃j Ĩj

S̃j + Ĩj
− γj Ĩj = 0, j ∈ Ω, (1.4b)

where S̃j and Ĩj denote the number of susceptible and infected individuals in patch j ∈ Ω at
equilibrium, respectively. In view of (1.3), we impose the condition∑

j∈Ω

(
S̃j + Ĩj

)
= N. (1.4c)

Let S̃ = (S̃j) and Ĩ = (Ĩj). We are only interested in solutions (S̃, Ĩ) of (1.4), which satisfy S̃ ≥ 0
and Ĩ ≥ 0. A disease-free equilibrium (DFE) is a solution in which Ĩj = 0 for all j ∈ Ω. An
endemic equilibrium (EE) is a solution in which Ĩj > 0 for some j ∈ Ω. To distinguish between
these two types of equilibria, we will for notational convenience denote a DFE by (Ŝ, 0) and an
EE by (S̃, Ĩ).
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1.3 Statement of the main results

We consider in Sect. 2 properties of the DFE, including its existence, uniqueness, and stability.
We first show that there exists a unique DFE (Ŝ, 0) and it is given by Ŝj = N/n for j ∈ Ω. We
then calculate the basic reproduction number R0 for (1.1) using the next generation approach
(Diekmann et al. 1990, Diekmann and Heesterbeek 2000, van den Driessche and Watmough 2002)
for which it is known that if R0 < 1 then the DFE is locally asymptotically stable, but if R0 > 1
then it is unstable. Our calculation will show that R0 does not depend on the diffusion coefficient
dS . Finally, we show that if R0 < 1 then the DFE is globally asymptotically stable.

In Sect. 3, we find an equivalent characterization for the stability of the DFE in terms of dI

rather than R0. In particular, we show that the DFE in a low-risk domain is stable if and only
if the diffusion coefficient for infected individuals lies above a certain threshold value, but in a
high-risk domain, the DFE is always unstable. We also show that when the DFE is unstable,
then there exists a unique EE. Moreover, the disease persists in every patch.

Theorem 1. Suppose that (A1)-(A3) hold and N is fixed.

(a) In a low-risk domain (Σβ < Σγ), there exists a threshold value d∗I ∈ (0,∞) such that R0 > 1
for dI < d∗I and R0 < 1 for dI > d∗I ;

(b) In a high-risk domain (Σβ ≥ Σγ), we have R0 > 1 for all dI .

(c) If R0 > 1 then an EE exists, it is unique, and Ĩ > 0.

Observe from (1.4) that in the limiting case dS = 0 there also exists a family of infinitely many
spatially inhomogeneous DFEs (Ŝ, 0), each of which satisfies

Ŝ ≥ 0 and
∑
j∈Ω

Ŝj = N. (1.5)

In Sect. 4, we show that if R0 > 1 then the EE approaches such a spatially inhomogeneous DFE
as the mobility of susceptible individuals becomes very small. We write this limiting DFE as
(S∗, 0) and also consider the distribution of patches for which S∗ is either positive or zero.

Theorem 2. Suppose that (A1)-(A3) hold, N is fixed, and R0 > 1.

(a) (S̃, Ĩ) → (S∗, 0) as dS → 0 for some S∗ satisfying (1.5);

(b) S∗ > 0 on H− and S∗j = 0 for some j ∈ H+;

(c) If
1
dI

> max
k∈H+

[
L−k

βk − γk

]
+ max

k∈H−

[
L+

k

βk − γk

]
(1.6)

then S∗ ≡ 0 on H+;

(d) If
1
dI

<
L−j

βj − γj
+ min

k∈H−

[
L+

k

βk − γk

]
(1.7)

for some j ∈ H+ then S∗j > 0.
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We now make several remarks concerning Theorem 2, which connects spatial heterogeneity,
habitat connectivity, and rates of movement. First, condition (1.6) will be satisfied whenever dI

is sufficiently small.
Second, Theorem 2 (c) immediately implies that if

1
dI

> max
k∈H+

[
L−k

βk − γk

]
(1.8)

then S∗ ≡ 0 on H+ because L+
k /(βk − γk) is nonpositive for every k ∈ H−. Although condition

(1.6) is more inclusive than condition (1.8), the latter is usually easier to verify. Furthermore, if
some low-risk patch (k ∈ H−) is not directly connected to any high-risk patches (L+

k = 0) then
conditions (1.6) and (1.8) are in fact equivalent.

Third, Theorem 2 (d) implies that if

1
dI

< max
k∈H+

[
L−k

βk − γk

]
+ min

k∈H−

[
L+

k

βk − γk

]
(1.9)

then S∗ 6≡ 0 on H+.

1.4 Examples

Before proving Theorems 1 and 2, we first illustrate the second theorem with some examples of
metapopulations occupying different distributions of low-risk and high-risk patches.

Example 1. If H− = {1, 2, . . . , n− 1} and H+ = {n} then Theorem 2 (b) implies that S∗ > 0 on
H− and S∗ = 0 on H+. For this case, condition (1.6) in Theorem 2 (c) may or may not hold but
condition (1.7) in Theorem 2 (d) cannot.

Example 2. If H− = {1} and H+ = {2, 3, . . . , n} then

max
k∈H−

[
L+

k

βk − γk

]
= min

k∈H−

[
L+

k

βk − γk

]
=

L+
1

β1 − γ1
.

Theorem 2 (b) implies that S∗ > 0 on H− and Theorem 2 (c, d) provides necessary and sufficient
conditions (except in the case of equality) for determining whether S∗ ≡ 0 or S∗ 6≡ 0 on H+. For
example, suppose that there are n = 3 patches with H− = {1} and H+ = {2, 3}. If

1
dI

> max
{

L21

β2 − γ2
,

L31

β3 − γ3

}
+
L12 + L13

β1 − γ1

then S∗ ≡ 0 on H+, but if

1
dI

< max
{

L21

β2 − γ2
,

L31

β3 − γ3

}
+
L12 + L13

β1 − γ1

then either S∗2 = 0 and S∗3 > 0 or S∗2 > 0 and S∗3 = 0.

Example 3. Suppose there are n = 9 patches arranged and connected as in Figure 1. We assume
that Lij ∈ {0, 1} with Lij = 1 whenever patches i and j are connected by an arrow. In addition,
γj = 1 and S̄j(0) + Īj(0) = 100 for j ∈ Ω, so that R[j]

0 = βj and N = 900. Four numerical
examples (see Figure 2) illustrate the values of S∗j for j ∈ Ω. Low-risk patches (R[j]

0 < 1) are



Allen et al. - SIS epidemic patch model 7

gray and high-risk patches (R[j]
0 > 1) are white. For R0 > 1 (dI < d∗I), the value of S∗j was

approximated by S̃j which was calculated using the iterative method (3.11) with dS ≤ 10−5,
dI = 1, and

∑
j∈Ω Ĩj < 0.005.

For the limiting DFE in Figure 2(a), susceptibles can persist only on low-risk patches. In this
case, condition (1.6) of Theorem 2 (c) is satisfied:

1 =
1
dI

> max
k∈H+

{
L−k

βk − γk

}
+ max

k∈H−

{
L+

k

βk − γk

}
=

2
0.5

− 2
0.5

= 0.

For the limiting DFE in Figure 2(b), susceptibles can persist on several high-risk patches. In this
case, condition (1.7) of Theorem 2 (d) is satisfied for j = 2, 5, 6:

1 =
1
dI

<
L−j

βj − γj
+ min

k∈H−

{
L+

k

βk − γk

}
=
{2 or 1}

0.25
− 1

0.5
= {6 or 2},

but not for j = 3:

1 =
1
dI

>
L−3

β3 − γ3
+ min

k∈H−

{
L+

k

βk − γk

}
=

0
0.25

− 1
0.5

= −2.

We consider Figure 2(c, d) in the Discussion.

2 The Disease-Free Equilibrium

Throughout this section, we assume that (A1)-(A3) hold and that N is fixed.

2.1 Existence and uniqueness of the DFE

Eq. (1.4) has a unique disease-free solution, and it is spatially homogeneous.

Lemma 2.1. A DFE (Ŝ, 0) exists, it is unique, and it is given by Ŝj = N/n for j ∈ Ω.

Proof. It is clear from (1.4) that (Ŝ, 0), with Ŝj = N/n for j ∈ Ω, is a DFE. Now, let (S̃, 0) be any
DFE. Choose m ∈ Ω such that S̃m = min{S̃j : j ∈ Ω}. Setting Ĩ = 0 in (1.4a) with j = m leads
to
∑

k∈Ω Lmk(S̃k− S̃m) = 0. The minimality of S̃m implies that S̃k = S̃m whenever Lmk > 0. Let
j ∈ Ω with j 6= m. The irreducibility of L implies that there exists a chain from j to m, i.e., a
sequence j1, j2, . . . , js ∈ Ω with j1 = j and js = m such that Ljpjp+1 > 0 for 1 ≤ p ≤ s− 1. Thus
S̃jp = S̃jp+1 for 1 ≤ p ≤ s − 1. We conclude that S̃j = S̃m. Since j is arbitrary, we must have
S̃j = S̃m for all j ∈ Ω. In view of (1.4c) with Ĩ = 0, we obtain S̃j = N/n for j ∈ Ω.

2.2 Stability of the DFE

Applying Lemma 2.1, we can calculate the basic reproduction number R0 for (1.1) using the next
generation approach (Diekmann et al. 1990, Diekmann and Heesterbeek 2000, van den Driessche
and Watmough 2002). Since there are n patches, the basic reproduction number will be the
spectral radius of an n×n nonnegative matrix. It is known that if R0 < 1 then the DFE is locally
asymptotically stable and if R0 > 1 then the DFE is unstable (van den Driessche and Watmough
2002).
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Lemma 2.2. The basic reproduction number for (1.1) is the spectral radius of the next generation
matrix,

R0 = ρ(FV −1),

where F = diag(βj) and V = diag(γj + dILj)− dIL.

Proof. We can write (1.1b) as
dĪ

dt
= F − V,

where F is the vector of new infections and V is the vector of transitions in the n infected states.
Linearization of this system about the DFE yields

dx

dt
= (F − V )x,

where F and V are the Jacobian matrices of F and V, respectively, evaluated at the DFE. The
eigenvalues of (F−V ) have negative real part if and only if R0 = ρ(FV −1) < 1 (van den Driessche
and Watmough 2002).

We now show that if R0 < 1, then the disease always becomes extinct, i.e., the DFE is globally
asymptotically stable.

Lemma 2.3. If R0 < 1 then (S̄, Ī) → (Ŝ, 0) as t→∞.

Proof. Suppose that R0 < 1. We will use the comparison principle to show that Ī(t) → 0 as
t→∞. To begin, observe from (1.1b) that

dĪj
dt

≤ dI

∑
k∈Ω

LjkĪk + (βj − γj − dILj)Īj , j ∈ Ω,

or equivalently
dĪ

dt
≤ (F − V )Ī ,

where F and V are as in Lemma 2.2. The linear comparison system

dx

dt
= (F − V )x, x(0) = Ī(0),

which is monotone, has eigenvalues with negative real part because R0 < 1 (van den Driessche
and Watmough 2002). Consequently, x(t) → 0 as t→∞. By comparison, Ī(t) → 0 as t→∞.

The global asymptotic stability of the DFE when R0 < 1 implies that there can be no EE in
this case. In Sect. 3, we consider what happens when R0 > 1.

3 The Endemic Equilibrium

Throughout this section, we again assume that (A1)-(A3) hold and that N is fixed.
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3.1 Equivalent problems

It will be useful to consider several alternative statements of the equilibrium problem. We present
here the first such equivalent problem.

Lemma 3.1. The pair (S̃, Ĩ) is a solution of (1.4) if and only if (S̃, Ĩ) is a solution of

κ = dSS̃j + dI Ĩj , j ∈ Ω, (3.1a)

0 = dI

∑
k∈Ω

Ljk(Ĩk − Ĩj) + Ĩj

(
βj − γj −

βj Ĩj

S̃j + Ĩj

)
, j ∈ Ω, (3.1b)

N =
∑
j∈Ω

(
S̃j + Ĩj

)
, (3.1c)

where κ is some positive constant that is independent of j ∈ Ω.

Proof. Suppose first that (S̃, Ĩ) is a solution of (1.4). We will show that there exists some κ > 0
such that (S̃, Ĩ) satisfies (3.1a). Summing (1.4a) and (1.4b) produces the relation

dS

∑
k∈Ω

Ljk(S̃k − S̃j) + dI

∑
k∈Ω

Ljk(Ĩk − Ĩj) = 0, j ∈ Ω.

We rearrange to get ∑
k∈Ω

(Ljk/Lj)
(
dSS̃k + dI Ĩk

)
= dSS̃j + dI Ĩj , j ∈ Ω.

We can express this system of equations in matrix-vector form as

A
(
dSS̃ + dI Ĩ

)
= dSS̃ + dI Ĩ ,

where A = (Ljk/Lj). Clearly, A ≥ 0 because L ≥ 0 and Lj > 0 for j ∈ Ω. Moreover, since A
and L are associated with the same adjacency matrix, it follows that A is irreducible. According
to the Frobenius Theorem (Gantmacher 1960, Theorem 2, p. 53), A has a largest (or principal)
eigenvalue µ which is real and µ has a one-dimensional eigenspace 〈ψ〉 for some positive eigenvector
ψ. No other eigenvalue of A has a positive corresponding eigenvector. Since A is a stochastic
matrix, the positive vector x = (1, 1, . . . , 1)t is an eigenvector for A belonging to the eigenvalue 1.
It follows from the remarks above that µ = 1 and we may take ψ = x. As the vector dSS̃ + dI Ĩ
is also an eigenvector for A belonging to the eigenvalue 1, we conclude that dSS̃ + dI Ĩ = κψ for
some κ ∈ R. Since dSS̃j + dI Ĩj > 0 for at least one j ∈ Ω (because N > 0) it must be that κ > 0.
Therefore (S̃, Ĩ) satisfies (3.1a) for some κ > 0. The fact that (S̃, Ĩ) satisfies (3.1b) and (3.1c) is
clear by inspection. If (S̃, Ĩ) is a solution of (3.1) for some κ > 0 then it follows from a direct
calculation that (S̃, Ĩ) satisfies (1.4).

For our second equivalent formulation of the equilibrium problem, let

Sj =
S̃j

κ
and Ij =

dI Ĩj
κ

(3.2)

where κ is as in Lemma 3.1. Let S = (Sj), I = (Ij), and

fj(u) = βj

(
1− dSu

dI + (dS − dI)u

)
− γj , u ∈ [0, 1] and j ∈ Ω. (3.3)

Observe that if βj > 0 then fj decreases from βj − γj to −γj as u increases from 0 to 1. The next
result follows from a direct calculation.



Allen et al. - SIS epidemic patch model 10

Lemma 3.2. The pair (S̃, Ĩ) is a solution of (3.1) if and only if (S, I) is a solution of

1 = dSSj + Ij , j ∈ Ω, (3.4a)

0 = dI

∑
k∈Ω

Ljk(Ik − Ij) + Ijfj(Ij), j ∈ Ω, (3.4b)

κ =
dIN∑

j∈Ω (dISj + Ij)
. (3.4c)

The benefit of this second formulation is that (3.4b) depends on I but not S. Thus, once I
is determined, then it is a simple matter to determine S from (3.4a) and κ from (3.4c). Observe
that κ is in a one-to-one correspondence with N .

3.2 An eigenvalue problem

The linear eigenvalue problem associated with (3.1b) at the DFE is

dI

∑
k∈Ω

Ljk(ψk − ψj) + (βj − γj)ψj + λψj = 0, j ∈ Ω. (3.5)

Observe that (3.5) can be written as

dI

∑
k∈Ω

Ljkψk + (βj + θ − γj − dILj)ψj = (θ − λ)ψj , j ∈ Ω,

where θ = max{γj + dILj : j ∈ Ω}, and this equation can be written in the equivalent matrix-
vector form (dIL +D)ψ = (θ − λ)ψ, where D = diag(βj + θ − γj − dILj) and ψ = (ψj). Thus,
(λ, ψ) is a solution of (3.5) if and only if (µ, ψ) = (θ − λ, ψ) is a solution of

Qψ = µψ, (3.6)

where Q = dIL+D.

Lemma 3.3. The matrix Q has all real eigenvalues and it has a largest eigenvalue µ∗ = µ∗(dI)
which is positive. This eigenvalue µ∗ has a one-dimensional eigenspace 〈φ〉, where φ > 0. Fur-
thermore, no other eigenvalue of Q has a positive corresponding eigenvector.

Proof. By construction, Qjk = dILjk ≥ 0 for j, k ∈ Ω with j 6= k, and Qjj ≥ dILjj + βj ≥ 0 for
j ∈ Ω. Therefore, Q is nonnegative. Moreover, Q is irreducible because Q and L are associated
with adjacency matrices whose off-diagonal entries are the same. The stated properties of Q now
follow from the Frobenius Theorem (Gantmacher 1960).

Lemma 3.4. Define λ∗ = λ∗(dI) = θ − µ∗(dI) and let φ > 0 be as in Lemma 3.3. Then

(a) λ∗ is real and (λ∗, φ) satisfies (3.5), i.e.,

dI

∑
k∈Ω

Ljk(φk − φj) + (βj − γj)φj + λ∗φj = 0, j ∈ Ω; (3.7)

Moreover, (λ∗, ψ) satisfies (3.5) if and only if ψ ∈ 〈φ〉. Finally, if (λ, ψ) satisfies (3.5) with
λ 6= λ∗ then λ > λ∗ and ψj ≤ 0 for some j ∈ Ω;

(b) λ∗ is a strictly monotone increasing function of dI > 0;
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(c) λ∗ → min{γj − βj : j ∈ Ω} as dI → 0;

(d) λ∗ →
Σγ − Σβ

n
as dI →∞;

(e) If Σβ ≥ Σγ then λ∗ < 0 for all dI > 0;

(f) If Σβ < Σγ then the equation λ∗(dI) = 0 has a unique positive root denoted by d∗I . Further-
more, if dI < d∗I then λ∗ < 0 and if dI > d∗I then λ∗ > 0.

The proof of Lemma 3.4 appears in Appendix B. In view of Lemma 3.4 (e, f), let us define
d∗I = ∞ when Σβ ≥ Σγ . We now connect λ∗ to the basic reproduction number R0.

Lemma 3.5. Let R0 and λ∗ be as in Lemmas 2.2 and 3.4, respectively. Then

(a) R0 < 1 if and only if λ∗ > 0;

(b) R0 > 1 if and only if λ∗ < 0.

Proof. Observe from (3.7) that
(F − V )φ+ λ∗φ = 0, (3.8)

where F and V are defined as in Lemma 2.2. Also, since F − V is symmetric, its eigenvalues are
all real. Finally, recall from van den Driessche and Watmough (2002) that (i) R0 < 1 if and only
if F −V has all negative eigenvalues and (ii) R0 > 1 if and only if F −V has a positive eigenvalue.

(a) Suppose first that R0 < 1. We see from (3.8) that (−λ∗) is an eigenvalue of F − V . Since
F −V has all negative eigenvalues, we obtain λ∗ > 0. Now suppose that λ∗ > 0. Eq. (3.8) and
Lemma 3.4 (a) imply that (−λ∗) is the largest eigenvalue of F − V . Thus, all the eigenvalues
of F − V are negative, and consequently R0 < 1.

(b) Suppose first that R0 > 1. Then F − V has a positive eigenvalue µ. Eq. (3.8) and Lemma
3.4 (a) imply that λ∗ ≤ −µ < 0, i.e., λ∗ < 0. Now suppose that λ∗ < 0. We see from (3.8)
that µ = −λ∗ is a positive eigenvalue of F − V , and hence that R0 > 1.

In the next section, we use λ∗ and φ, rather than R0, to obtain the existence of an EE when
the DFE is unstable.

3.3 Existence of an EE

Lemma 3.6. Suppose that R0 > 1. Then (3.4) has a nonnegative solution (S, I) which can be
chosen to satisfy I 6≡ 0. Furthermore, this solution with I 6≡ 0 is unique, S > 0, and 0 < Ij < 1
for every j ∈ Ω.

Here we prove the existence of such an (S, I), and in the next section we will demonstrate that
it is unique. Suppose that R0 > 1. In view of (3.4b), consider the related system of differential
equations

dIj
dt

= Gj(I)
def= dI

∑
k∈Ω

Ljk(Ik − Ij) + Ijfj(Ij), j ∈ Ω. (3.9)

First, I is a solution of (3.4b) if and only if G(I) = 0, where G = (Gj). Second, (3.9) defines
a monotone dynamical system because Ljk is nonnegative when j 6= k. It follows that if I and
I are ordered (i.e., I ≤ I), and they are sub- and super-solutions of (3.9), respectively, i.e.,
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G(I) ≥ 0 ≥ G(I), then there must exist some I ∈ [I, I] such that G(I) = 0, where [I, I] = {I ∈
Rn : I ≤ I ≤ I} (Smith 1995).

With φ > 0 defined as in Lemma 3.3, we now show that I = εφ and I = (1, 1, . . . , 1)t can be
chosen as sub- and super-solutions for (3.9) if ε is chosen to be positive and sufficiently small. We
may assume that φ is chosen so that

∑
j∈Ω φ

2
j = 1. Lemma 3.5 (b) implies that λ∗ < 0. In view

of (3.3), define

g(u) =
dSu

dI + (dS − dI)u
, u ∈ [0, 1].

We remark that g increases from 0 to 1 as u increases from 0 to 1. Observe from (3.3) and (3.7)
that

Gj(I) = dI

∑
k∈Ω

Ljk(εφk − εφj) + εφjfj(εφj)

= ε

[
dI

∑
k∈Ω

Ljk(φk − φj) + (βj − γj)φj − βjφjg(εφj)

]
= εφj [−λ∗ − βjg(εφj)]

is positive for j ∈ Ω when 0 < ε � 1. Therefore, I is a sub-solution of (3.9) for ε positive and
sufficiently small. Next, since Gj(I) = fj(1) = −γj is nonpositive for j ∈ Ω, it follows that I
is a super-solution of (3.9). Also, it is obvious that I ≤ I if ε is chosen sufficiently small. We
conclude from the remarks above that there must be an I ∈ [I, I] with G(I) = 0. That is, there
exists some I satisfying (3.4b) with 0 < Ij ≤ 1 for j ∈ Ω. We argue by contradiction to show
that Ij cannot be equal to 1 for any j ∈ Ω. If Ij = 1 for all j ∈ Ω then Gj(I) = −γj < 0 for
j ∈ H−, a contradiction. If Ij = 1 and Im < 1 for some j,m ∈ Ω then there exists a chain
from j to m, i.e., a sequence j1, j2, . . . , js ∈ Ω with j1 = j and js = m such that Ljpjp+1 > 0 for
1 ≤ p ≤ s− 1. Thus, there exists some k ∈ Ω for which Ijk

= 1, Ijk+1
< 1, and Ljkjk+1

> 0. But
then Gjk

(I) ≤ Ljkjk+1
(Ijk+1

− Ijk
)− γj < 0, again a contradiction. We conclude that 0 < Ij < 1

for j ∈ Ω. In view of (3.4a), let us define S by 1 = dSS + I. Then S > 0. Consequently, (S, I) is
a positive solution of (3.4) with Ij < 1 for j ∈ Ω.

For sake of completeness, and also for the purpose of proving uniqueness in the next section,
we now proceed to construct an iteration algorithm to find I. This algorithm is also used to
generate the numerical plots appearing in Figure 2. Eq. (3.4b) can be written equivalently as

−dI

∑
k∈Ω

Ljk(Ik − Ij) = Fj(Ij), j ∈ Ω, (3.10)

where Fj(u) = ufj(u). Let j ∈ Ω. By inspection, the function fj in (3.3) and its derivative f ′j
are bounded for u ∈ [0, 1]. We conclude that there exists some M > 0 (which can be chosen
to be independent of j) such that |F ′

j(u)| < M for u ∈ [0, 1]. It follows that F ′
j(u) + M > 0

for u ∈ [0, 1]. That is, Fj(u) + Mu is a monotone increasing function of u ∈ [0, 1]. Since
F ′

j(u) = fj(u) + uf ′j(u) ≤ fj(u) for u ∈ [0, 1], it follows that fj(u) +M > 0 for u ∈ [0, 1].
We now add MIj to both sides of (3.10) to get

−dI

∑
k∈Ω

Ljk(Ik − Ij) +MIj = Fj(Ij) +MIj , j ∈ Ω.

This equation inspires the vector iteration

−dI

∑
k∈Ω

Ljk

(
I

(l+1)
k − I

(l+1)
j

)
+MI

(l+1)
j = Fj

(
I

(l)
j

)
+MI

(l)
j , j ∈ Ω, (3.11)
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with the index l ≥ 0. This implicit scheme can be made explicit because the left-hand operator,
which takes the form A + MIn = M [(1/M)A + In], is invertible for M sufficiently large. Let
I(l) =

(
I

(l)
j

)
. For our purposes, we will set I(0) = I = εφ with ε taken to be sufficiently small so

that I is a sub-solution of (3.9) satisfying I < I = (1, 1, . . . , 1)t. Similarly, we define the iteration

−dI

∑
k∈Ω

Ljk

(
I

[l+1]
k − I

[l+1]
j

)
+MI

[l+1]
j = Fj

(
I

[l]
j

)
+MI

[l]
j , j ∈ Ω, (3.12)

for l ≥ 0 with I [0] = I, a super-solution of (3.9). We want to show that

I = I(0) ≤ I(1) ≤ · · · ≤ I(n) ≤ · · · ≤ I [n] ≤ · · · ≤ I [1] ≤ I [0] = I,

where the symbols surrounding the iteration index indicate the initial condition for the sequence.
For convenience, we will refer to the sequences I(l) and I [l] as the lower and upper sequences,
respectively.

It can be shown that all components of both sequences remain within the interval [0, 1],
that the lower sequence is nondecreasing, that the upper sequence is nonincreasing, and that an
iterate of the lower sequence is always less than or equal to the corresponding iterate of the upper
sequence. Let ∆I(l) = I(l+1) − I(l), ∆I [l] = I [l+1] − I [l], and ∆I{l} = I [l] − I(l).

Lemma 3.7. The following statements hold:

(a) I(l)
j , I

[l]
j ∈ [0, 1] for l ≥ 0 and j ∈ Ω;

(b) ∆I(l) ≥ 0, ∆I [l] ≤ 0, and ∆I{l} ≥ 0 for l ≥ 0.

The proof of this result appears in Appendix C. According to Lemma 3.7, the lower and
upper sequences are both monotone and bounded. They also satisfy I ≤ I(l) ≤ I [l] ≤ I for l ≥ 0.
Therefore, there exist Imin and Imax such that I(l) → Imin and I [l] → Imax as l → ∞. Clearly,
I ≤ Imin ≤ Imax ≤ I. Furthermore, since Imin is a fixed point for (3.11), and Imax is a fixed point
for (3.12), each is a solution to (3.4b) with the property that 0 < Imin

j ≤ Imax
j ≤ 1 for j ∈ Ω. By an

argument similar to the one given above, we obtain the stronger result that 0 < Imin
j ≤ Imax

j < 1
for j ∈ Ω. In the next section, we show that Imin

j = Imax
j .

3.4 Uniqueness of the EE

Because we are interested only in those (S, I) that satisfy (3.4) with S ≥ 0 and I ≥ 0, we will
assume throughout this section that if I is a solution to (3.4b) then 0 ≤ Ij ≤ 1 for j ∈ Ω.

Lemma 3.8. If I is a solution to (3.4b) then either I ≡ 0 or I > 0.

Proof. We argue by contradiction. Suppose that I is a solution of (3.4b) with I 6≡ 0 and I 6> 0.
Then there exist nonempty subsets K− and K+ of Ω with Ij = 0 for j ∈ K−, Ij > 0 for j ∈ K+,
and K− ∪K+ = Ω. Eq. (3.4b) implies that

∑
k∈Ω LjkIk = 0 for j ∈ K−. The nonnegativity of L

and I implies that LjkIk = 0 for j ∈ K− and k ∈ Ω. Since Ik > 0 when k ∈ K+, we must have
Ljk = 0 when j ∈ K− and k ∈ K+. But this contradicts the irreducibility of L. We conclude
that either I ≡ 0 or I > 0.

The following lemma justifies our referring to Imin and Imax as minimal and maximal solutions,
respectively.

Lemma 3.9. If I is a positive solution to (3.4b) then I ∈ [Imin, Imax].
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Proof. Choose ε small enough so that I = I(0) ≤ I ≤ I [0] = I. Arguments similar to the one used
in the proof of Lemma 3.7 (b) show that I(l) ≤ I ≤ I [l] for l ≥ 0. The conclusion follows by letting
l→∞.

We now show that if two positive solutions of (3.4b) are ordered, then they are either strictly
ordered or they are equal.

Lemma 3.10. If I− and I+ are positive solutions to (3.4b) with I− ≤ I+, then either I− < I+

or I− ≡ I+.

Proof. We argue by contradiction. Suppose that I− = (I−j ) and I+ = (I+
j ) are positive solutions

to (3.4b) with I− ≤ I+, and that neither I− < I+ nor I− ≡ I+. Then there exist nonempty
and disjoint subsets K− and K+ of Ω, whose union forms all of Ω, and with the property that
I−j < I+

j for j ∈ K− and I−j = I+
j for j ∈ K+. We subtract (3.4b) with I = I− from (3.4b) with

I = I+, and use the fact that I−j = I+
j for j ∈ K+, to get

∑
k∈K− Ljk(I+

k − I−k ) = 0 for j ∈ K+.
We only sum over k ∈ K− because I+

k = I−k for k ∈ K+. By definition, the expression I+
k − I−k

is positive for k ∈ K−. Consequently, Ljk = 0 for j ∈ K+ and k ∈ K−. But this contradicts the
irreducibility of L. We conclude that either I− < I+ or I− ≡ I+.

Lemma 3.11. If I∗ and I∗∗ are positive solutions to (3.4b) then I∗ ≡ I∗∗.

Proof. We argue by contradiction. Suppose that I∗ and I∗∗ are positive solutions to (3.4b) with
I∗ 6≡ I∗∗. Then I∗, I∗∗ ∈ [Imin, Imax] by Lemma 3.9. Since I∗ 6≡ I∗∗, it follows that Imin 6≡ Imax.
We conclude from the relation Imin ≤ Imax and Lemma 3.10 that Imin < Imax. So, without loss
of generality, we may assume that I∗ < I∗∗, for otherwise we may replace I∗ with Imin and I∗∗

with Imax. We substitute I∗ = (I∗j ) and I∗∗ = (I∗∗j ) individually into (3.4b) to get

dI

∑
k∈Ω

Ljk(I∗k − I∗j ) + I∗j fj(I∗j ) = 0, j ∈ Ω,

dI

∑
k∈Ω

Ljk(I∗∗k − I∗∗j ) + I∗∗j fj(I∗∗j ) = 0, j ∈ Ω.

We multiply both sides of the first equation by I∗∗j and both sides of the second equation by I∗j ,
subtract the resulting equations, and then sum over all j ∈ Ω to get

dI

∑
j,k∈Ω

Ljk

[
I∗∗j I∗k − I∗j I

∗∗
k

]
+
∑
j∈Ω

I∗j I
∗∗
j

[
fj(I∗j )− fj(I∗∗j )

]
= 0.

The symmetry of L implies that the first sum vanishes, and the second sum is nonnegative
because I∗j I

∗∗
j > 0 and fj(I∗j ) ≥ fj(I∗∗j ) for j ∈ Ω. The fact that βk > 0 for k ∈ H+ implies that

fk(I∗k) > fk(I∗∗k ), and thus the second sum is in fact positive, a contradiction. We conclude that
I∗ ≡ I∗∗.

Lemmas 3.9 and 3.11 imply that (3.4b) has a unique positive solution given by I
def= Imin =

Imax. We conclude form Lemma 3.8 that I is the only nonnegative solution of (3.4b) satisfying
I 6≡ 0. We have completed the proof of Lemma 3.6. The next result follows from Lemmas 3.2 and
3.6 and (3.2).

Lemma 3.12. Suppose that R0 > 1. Then (1.4) has a nonnegative solution (S̃, Ĩ) which satisfies
Ĩ 6≡ 0. Furthermore, this solution is unique, it is given by (S̃, Ĩ) = (κS, κI/dI) where κ is as in
(3.4c), and Ĩ > 0.

We have shown that a unique EE exists when R0 > 1 and that it satisfies Ĩ > 0. In the next
section, we consider the asymptotic behavior of the EE as dS → 0.
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4 Asymptotic Behavior of the Endemic Equilibrium

Throughout this section, we still assume that (A1)-(A3) hold and that N is fixed. We also assume
that R0 > 1, so that Lemma 3.6 for (S, I) and Lemma 3.12 for (S̃, Ĩ) always apply.

4.1 The limiting DFE

Observe that S̃, Ĩ, and κ are all functions of dS in (1.4) and (3.1). First, we determine the
asymptotic behavior of Ĩ and κ.

Lemma 4.1. As dS → 0, κ→ 0 and Ĩ → 0.

Proof. We first show that κ→ 0 as dS → 0. Let j ∈ H− and Îj be a limit point of Ĩj as dS → 0.
Eq. (1.4a) and the nonnegativity of βj , S̃j , and Ĩj imply that

dS

∑
k∈Ω

Ljk(S̃k − S̃j) ≤ Ĩj (βj − γj) .

Since S̃k ∈ [0, N ] for k ∈ Ω, it follows that the left-hand side vanishes as dS → 0. Since βj < γj ,
it must be that Îj ≤ 0. But Îj ≥ 0 because Ĩj > 0 for dS > 0. We conclude that Îj = 0. Thus,
Ĩj → 0 as dS → 0 for all j ∈ H−. Let k ∈ H− be fixed. Eq. (3.1a) implies that κ = dSS̃k + dI Ĩk.
The product dSS̃k → 0 as dS → 0 because S̃k ∈ [0, N ], and dI Ĩk → 0 as dS → 0 by the argument
above. Therefore, κ→ 0 as dS → 0.

We now show that Ĩ → 0. Let j ∈ Ω. Again, (3.1a) specifies that κ = dSS̃j + dI Ĩj . The left-
hand side vanishes as dS → 0 by part (a). The product dSS̃j → 0 as dS → 0 because S̃j ∈ [0, N ].
We conclude that Ĩj → 0 as dS → 0.

So that we may determine the asymptotic behavior of S̃, we first consider I in (3.2) as a
function of dS .

Lemma 4.2. Ij is a monotone decreasing function of dS for each j ∈ Ω.

Proof. Suppose that 0 < dS1 < dS2 and let I1 and I2 be corresponding solutions to (3.4b) with
0 < I1

j , I
2
j < 1 for j ∈ Ω. Then

dI

∑
k∈Ω

Ljk(I1
k − I1

j ) + I1
j fj(I1

j , dS1) = 0, j ∈ Ω, (4.1a)

dI

∑
k∈Ω

Ljk(I2
k − I2

j ) + I2
j fj(I2

j , dS2) = 0, j ∈ Ω, (4.1b)

where

fj(u, dS) = βj

(
1− dSu

dSu+ dI(1− u)

)
− γj , u ∈ [0, 1] and j ∈ Ω.

It is easy to see that ∂fj/∂dS ≤ 0. It follows from this fact and (4.1b) with dS1 in place of dS2

that
dI

∑
k∈Ω

Ljk(I2
k − I2

j ) + I2
j fj(I2

j , dS1) ≥ 0, j ∈ Ω.

Thus, I2 is a sub-solution of (4.1a). Again, I = (1, 1, . . . , 1)t is a super-solution of (4.1a). Also,
I2 < I. By the iteration method presented in Sects. 3.3 and 3.4, (4.1a) has a unique solution
I1 ∈ [I2, I]. We conclude that I1 ≥ I2.
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Recall that 0 < Ij < 1 for each j ∈ Ω. The above lemma implies that for every j ∈ Ω, there
exists some I∗j such that as dS → 0,

Ij → I∗j and 0 < I∗j ≤ 1. (4.2)

Let I∗ = (I∗j ). It remains to establish conditions under which 0 < I∗j < 1 or I∗j = 1. Let

J− = {j ∈ Ω : 0 < I∗j < 1} and J+ = {j ∈ Ω : I∗j = 1}.

Observe that J− ∪ J+ = Ω. We will need to know that J− is nonempty.

Lemma 4.3. H− ⊆ J−.

Proof. We argue by contradiction. Suppose that there exists some j ∈ H− with j ∈ J+. Then
βj < γj and I∗j = 1. In view of (3.2), we multiply both sides of (3.1b) by dI/κ and drop the
nonnegative term βj Ĩj/(S̃j + Ĩj) to get

dI

∑
k∈Ω

Ljk(Ik − Ij) + Ij(βj − γj) ≥ 0.

Letting dS → 0 on both sides yields

dI

∑
k∈Ω

Ljk(I∗k − 1) + βj − γj ≥ 0.

The negativity of βj − γj implies that∑
k∈Ω

Ljk(I∗k − 1) > 0.

But this inequality contradicts (4.2). We conclude that if j ∈ H− then j ∈ J−.

We are now in a position to determine the asymptotic behavior of S̃j .

Lemma 4.4. The following statements hold:

(a) κ/dS → N∗ def= N/
∑

j∈Ω(1− I∗j ) as dS → 0;

(b) S̃ → S∗ as dS → 0, where S∗j
def= (1− I∗j )N∗;

(c) S∗ ≥ 0 and
∑

j∈Ω S
∗
j = N .

Proof.

(a) Eqs. (3.1a), (3.1c), and (3.2) imply that

N =
∑
j∈Ω

(
κ− dI Ĩj
dS

)
+
∑
j∈Ω

Ĩj =
κ

dS

∑
j∈Ω

(1− Ij) +
∑
j∈Ω

Ĩj .

Lemma 4.1 and (4.2) imply that

κ

dS
→ N∑

j∈Ω(1− I∗j )
as dS → 0.

This limit is well-defined because J− is nonempty.
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(b) Again, (3.1a) and (3.2) imply that

S̃j =
κ− dI Ĩj
dS

= (1− Ij)
κ

dS
.

Eq. (4.2) and part (a) imply that S̃j → (1− I∗j )N∗ as dS → 0.

(c) This part follows immediately from parts (a) and (b), the positivity of N , and (4.2).

4.2 The limiting DFE on high-risk sites

Observe from Lemma 4.4 (b) that S∗ > 0 on J− and S∗ ≡ 0 on J+. We know from Lemma 4.3
that J− is nonempty because it contains H−. Next we show that J+, which is a subset of H+, is
also nonempty.

Lemma 4.5. J+ is nonempty.

Proof. We argue by contradiction. Suppose that J+ is empty, i.e., J− = Ω. Multiply both sides
of (3.1b) by dI/κ to get

dI

∑
k∈Ω

Ljk(Ik − Ij) + Ij

(
βj − γj −

βj Ĩj

S̃j + Ĩj

)
= 0, j ∈ Ω. (4.3)

Since I∗j ∈ (0, 1) for j ∈ Ω, we have from (3.4a) and (4.2) that Sj = (1− Ij)/dS →∞ as dS → 0
for j ∈ Ω. It follows from this fact and (3.2) that

βj Ĩj

S̃j + Ĩj
=

βjIj
dISj + Ij

→ 0

as dS → 0 for j ∈ Ω. Letting dS → 0 in (4.3), we get

dI

∑
k∈Ω

Ljk(I∗k − I∗j ) + I∗j (βj − γj) = 0, j ∈ Ω.

Thus (λ, ψ) = (0, I∗) satisfies (3.5). Since I∗ > 0, we obtain from Lemma 3.4 (a) that λ∗ = 0.
But this contradicts Lemma 3.5 (a). We conclude that J+ is nonempty.

Next, we determine a condition under which J+ is as large as it can be.

Lemma 4.6. If condition (1.6) holds then J+ = H+.

Proof. Recall that J+ ⊆ H+. We argue by contradiction to show that if condition (1.6) holds
then H+ ⊆ J+. Suppose that condition (1.6) holds and that there exists some j ∈ H+ with the
property that j ∈ J−. Without loss of generality, we may assume that I∗j = min{I∗k : k ∈ H+}.
Choose m ∈ H− so that I∗m = min{I∗k : k ∈ H−}. Letting dS → 0 in (3.4b) implies that

dI

∑
k∈Ω

Ljk(I∗k − I∗j ) + I∗j (βj − γj) = 0.

Here we used the fact that 0 < I∗j < 1. Since Ω = H− ∪H+, we obtain

dI

∑
k∈H+

Ljk(I∗k − I∗j ) + dI

∑
k∈H−

LjkI
∗
k + I∗j (βj − γj − dIL

−
j ) = 0.
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The minimality of I∗j over H+ and I∗m over H− implies that

(dIL
−
j )I∗m ≤ I∗j (γj − βj + dIL

−
j ). (4.4)

A similar argument shows that

(dIL
+
m)I∗j ≤ I∗m(γm − βm + dIL

+
m). (4.5)

We multiply corresponding sides of (4.4) and (4.5) together and simplify to get

(γj − βj)(γm − βm) + (γj − βj)dIL
+
m + (γm − βm)dIL

−
j ≥ 0.

We divide both sides by dI(γj − βj)(γm − βm), which is negative, and rearrange to get

1
dI
≤

L−j
βj − γj

+
L+

m

βm − γm
≤ max

j∈H+

[
L−j

βj − γj

]
+ max

k∈H−

[
L+

k

βk − γk

]
.

This contradicts (1.6). We conclude that H+ ⊆ J+, and therefore that H+ = J+.

Finally, we determine a condition under which J+ is a proper subset of H+.

Lemma 4.7. If condition (1.7) holds for some j ∈ H+ then j ∈ J−.

Proof. We argue by contradiction. Suppose that condition (1.7) holds for some p ∈ H+, and that
p ∈ J+. Choose m ∈ H− such that I∗m = max{I∗k : k ∈ H−} < 1. We let dS → 0 in (3.4b) with
j = m to get

0 = dI

∑
k∈Ω

Lmk(I∗k − I∗m) + I∗m(βm − γm).

We rearrange to get

0 = dI

∑
k∈H+

LmkI
∗
k + dI

∑
k∈H−

LmkI
∗
k + I∗m(βm − γm − dILm).

The upper bound of 1 on I∗k and the maximality of I∗m imply that

0 ≤ dIL
+
m + I∗m(βm − γm + dIL

−
m − dILm).

The relation L+
m + L−m = Lm implies that

I∗m(γm − βm + dIL
+
m) ≤ dIL

+
m.

The positivity of γm − βm implies that

I∗m ≤ dIL
+
m

γm − βm + dIL
+
m
. (4.6)

Letting dS → 0 in (3.4b), we get

0 ≤ dI

∑
k∈Ω

Ljk(I∗k − I∗j ) + I∗j (βj − γj), j ∈ Ω.

Again, we rearrange to get

0 ≤ dI

∑
k∈H+

LjkI
∗
k + dI

∑
k∈H−

LjkI
∗
k + I∗j (βj − γj − dILj), j ∈ Ω.
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In particular, if j = p then

0 ≤ dIL
+
p + dI

∑
k∈H−

LpkI
∗
k + (βp − γp − dILp).

The relation L+
p + L−p = Lp and the maximality of I∗m imply that

0 ≤ dI(I∗m − 1)L−p + βp − γp.

Eq. (4.6) implies that

0 ≤ dI

(
dIL

+
m

γm − βm + dIL
+
m
− 1
)
L−p + βp − γp.

We rearrange to get
βp − γp

dI
≥
(

γm − βm

γm − βm + dIL
+
m

)
L−p .

The positivity of γm − βm and βp − γp implies that

1
dI
≥

L−p
βp − γp

+
L+

m

βm − γm
≥

L−p
βp − γp

+ min
k∈H−

[
L+

k

βk − γk

]
.

But this contradicts (1.7) with j = p. We conclude that if (1.7) holds for some p ∈ H+ then
p ∈ J−.

5 Discussion

We first mention some limiting cases for which we can simplify the expression for the basic
reproduction number R0. We next state some open problems that relate to our work, and then
finish with some concluding remarks.

5.1 Limiting cases

In the general case, we will not be able to obtain a simple expression for R0. However, we can
compute an explicit expression for R0 in special cases.

In two limiting cases for n patches, the expression for R0 can be simplified. The basic re-
production number tends to the maximum ratio of the transmission rate to the recovery rate
as infected movement becomes arbitrarily small (R0 → max {βj/γj : j ∈ Ω} as dI → 0), and it
tends to the average transmission rate divided by the average recovery rate as infected movement
becomes arbitrarily large (R0 → Σβ/Σγ as dI →∞). The latter limit can be verified for a given
value of n by calculating the limit V −1

∞ of V −1 as dI → ∞ (McCormack 2006). For example,
if n = 2 patches then F =

( β1 0
0 β2

)
and V −1

∞ = 1
γ1+γ2

(
1 1
1 1

)
so that the limiting value of R0 is

ρ(FV −1
∞ ) = β1+β2

γ1+γ2
.

In the general case that n = 2 then R0 in Lemma 2.2 becomes

R0 =
β2γ1 + β1γ2 + dI`(β1 + β2) +

√
[β2γ1 − β1γ2 + dI`(β2 − β1)]2 + (2dI`)2β1β2

2[γ1γ2 + dI`(γ1 + γ2)]
,

where ` = L12 = L21. In this case, the condition R0 < 1 is equivalent to the following conditions:

(β1 − γ1 − dI`) + (β2 − γ2 − dI`) < 0,

(β1 − γ1 − dI`)(β2 − γ2 − dI`)− (dI`)2 > 0.

That is, the eigenvalues of F − V are negative if and only if the conditions above are satisfied.
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5.2 Open problems

Some open mathematical questions remain in connection with this research.

• We conjecture that the basic reproductive number R0 is a monotone decreasing function of
dI . The difficulty in showing this directly is that, although V −1 is a function of dI , a general
expression for V −1 is not simple. If this conjecture is true, then max {βj/γj : j ∈ Ω} and
Σβ/Σγ are upper and lower bounds on R0, respectively.

• We did not prove stability of the EE in Theorem 1. We conjecture that the EE globally
attracts all solutions of (1.1) satisfying (1.2), and numerical simulations suggest that this
is indeed the case. While the global attractivity of the EE may be difficult to establish, an
intermediate step would be to show that the EE is uniformly persistent.

• We do not yet fully understand the asymptotic behavior of the EE as dS → 0. For example,
condition (1.6) is not necessary for S∗j to be zero on a patch. In Figure 2(c) susceptibles
can persist on only one of four high-risk patches. In this case, condition (1.7) is satisfied for
j = 5:

1 =
1
dI

<
L−5

β5 − γ5
+ min

k∈H−

{
L+

k

βk − γk

}
=

2
0.5

− 1
0.5

= 2,

but neither conditions (1.6) nor (1.7) are satisfied for j = 2, 3, 6. Similarly, condition (1.7) is
probably not necessary for S∗j to be positive on a patch. It is easy to see that if some high-risk
patch (j ∈ H+) is not directly connected to any low-risk patches (L−j = 0) then condition
(1.7) cannot be satisfied because L+

k /(βk − γk) is nonpositive for k ∈ H−. However, this
does not rule out the possibility that S∗j > 0. In general, an open problem is to determine
the distribution of high-risk patches for which S∗ is either positive or zero when neither
condition (1.6) nor (1.7) is satisfied. In Figure 2(d), susceptibles cannot persist on the
single high-risk patch and neither condition (1.6) nor (1.7) is satisfied:

max
j∈H+

{
L−j

βj − γj

}
=

L−5
β5 − γ5

=
4
2

= 2,

min
j∈H−

{
L+

j

βj − γj

}
= − 1

0.5
= −2, and max

j∈H−

{
L+

j

βj − γj

}
= 0.

As always, there are biological realities that we did not take into account, but which ecologists
have suggested are important determinants of community dynamics.

• We neglect population dynamics (births or deaths) within the patches. At a very crude
level, we can either ignore these dynamics on the grounds that epidemic dynamics often
occur on a faster time scale than host demography, or we can say heuristically that death
of an infected individual and subsequent replacement by a susceptible (in the absence of
vertical transmission) is equivalent to a recovery event. Of course, either of these claims is
an approximation, and it remains to be seen whether the results would be sensitive to such
details.

• Death during movement may occur, especially if patches are separated by hostile “matrix”
habitat. Adding this phenomenon might simply mean that some component of mortality
(corresponding to a loss of infective potential, as argued in the previous point) scaled with
dI .
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• Density-dependent movement – typically increasing rates of movement at higher population
density, by organisms seeking to avoid competition – is generally an important factor in
determining the behavior of spatial population dynamics models (Amarasekare 2004).

These factors suggest possible directions for future exploration.

5.3 Mathematical and biological conclusions

Some of the relationships and techniques applied here have been applied by others. The rela-
tionship between the high rate of movement for infectives (dI > d∗I) and the basic reproduction
number (R0 < 1) was noted by Salmani and van den Driessche (2006) in a two-patch SIS epidemic
model. In addition, global stability of the DFE using comparison or monotone techniques has
been applied by others (Arino et al. 2005; Arino and van den Driessche 2006; Wang and Mulone
2003; Wang and Zhao 2004).

Our new results relate spatial heterogeneity, habitat connectivity, and rates of movement to
disease persistence and extinction. We showed for populations with low mobility of susceptibles
(dS ≈ 0) and moderate mobility of infectives (0 � dI < d∗I) that disease prevalence is very low
(Ĩ ≈ 0) in a spatial environment that includes both low-risk and high-risk patches. These results
may have implications for disease control. If the environment is low-risk, but infectives move a
lot, the disease may die out; conversely, restricting movement of infectives among patches (e.g.
by habitat fragmentation) may allow the disease to persist and/or re-emerge. In contrast, if a
high-risk spatial environment can be modified to include low-risk patches (i.e., low transmission
rates or high recovery rates) and if the mobility of susceptible individuals can be restricted, then
it may be possible to eliminate the disease. In epidemiology, quarantine attempts to prevent
infected individuals from moving into a patch with a susceptible population; a cordon sanitaire
attempts to restrict the movement of infected individuals out of a restricted area. The control
strategy suggested by these results most closely resembles the movement restrictions imposed on
all individuals (susceptible as well as infective) during the 2001 foot and mouth disease virus
epidemic in Britain.

In a broader sense, these results fall under the ecological rubric of source-sink dynamics –
population dynamics in heterogeneous environments with both “good” and “bad” patches (in our
terminology, high- or low-risk patches depending on whether we mean “good for the host” or
“good for the disease”). The initially counterintuitive result that movement of infectives leads to
disease extinction in a high-risk environment, which seems at odds with the idea of preventing
disease from spreading between high-risk core groups and the general population (Jacquez et al.
1995), or between patches in a metapopulation (Hess 1996), makes sense when we consider that
(unlike in the core-group example), high infection rates are a property of the environment rather
than of the individual. Ecologists usually want to prevent the extinction of threatened species;
in contrast, epidemiologists want to promote the extinction of disease. However, ecologists have
explored a broad range of questions, including evolutionary dynamics (Gomulkiewicz et al. 1999)
and community structure (Namba and Hashimoto 2004), in the context of source-sink dynamics.
In the long run, linking the mathematical analyses of theoretical epidemiological and ecological
models in heterogeneous landscapes can lead to broader mathematical and biological insights.
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Appendix A

The irreducibility of L implies that given any j, k ∈ Ω with j 6= k, there exists a distinct sequence
j1, j2, . . . , js ∈ Ω, with j1 = j and js = k, such that Ljpjp+1 > 0 for 1 ≤ p ≤ s − 1 (Seneta 1973,
Exercise 1.3). We call such a sequence a chain from j to k. Second, the irreducibility of L implies
that there exists no nonempty proper subset K of Ω with the property that Ljk = 0 for j ∈ K
and k 6∈ K (Bapat and Raghavan 1997, Lemma 1.1.1). Finally, to L is associated an adjacency
matrix B = (Bjk) for which Bjk = 1 if Ljk > 0 and Bjk = 0 if Ljk = 0. If the corresponding
adjacency matrix for another nonnegative matrix A has the same off-diagonal entries as B, then
A is also irreducible (Ortega 1987).

Appendix B

Proof of Lemma 3.4.

(a) As θ and µ∗ are both real, so is λ∗. The fact that (µ∗, φ) is a solution of (3.6) implies that
(λ∗, φ) is a solution of (3.5). Since (λ∗, ψ) satisfies (3.5) if and only if (µ∗, ψ) satisfies (3.6),
and (µ∗, ψ) is a solution of (3.6) if and only if ψ ∈ 〈φ〉, it follows that (λ∗, ψ) is a solution
of (3.5) if and only if ψ ∈ 〈φ〉. Suppose that (λ, ψ) satisfies (3.5) with λ 6= λ∗. Then (µ, ψ)
satisfies (3.6) with µ = θ − λ 6= θ − λ∗ = µ∗. Lemma 3.3 implies that µ < µ∗ and ψj ≤ 0 for
some j ∈ Ω. We conclude that λ = θ − µ > θ − µ∗ = λ∗.

(b) Observe from (3.7) that both φ and λ∗ are functions of dI . Both φ and λ∗ are in fact
differentiable functions of dI by the implicit function theorem. We differentiate both sides of
(3.7) by dI to obtain∑

k∈Ω

Ljk(φk − φj) + dI

∑
k∈Ω

Ljk

(
φ′k − φ′j

)
+ (βj − γj + λ∗)φ′j + (λ∗)′φj = 0, j ∈ Ω.

It suffices to show that (λ∗)′ > 0. We multiply both sides of the equation above by φj and
sum over all j ∈ Ω to get∑

j,k∈Ω

Ljk(φk − φj)φj + dI

∑
j,k∈Ω

Ljk

(
φ′k − φ′j

)
φj +

∑
j∈Ω

(βj − γj + λ∗)φjφ
′
j + (λ∗)′

∑
j∈Ω

φ2
j = 0.
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Eq. (3.7) and the symmetry of L imply that the second and third sums on the left-hand side
cancel: ∑

j∈Ω

(βj − γj + λ∗)φjφ
′
j = dI

∑
j,k∈Ω

Ljk(φj − φk)φ′j

= dI

∑
j,k∈Ω

Ljk(φ′j − φ′k)φj .

Therefore, ∑
j,k∈Ω

Ljk(φk − φj)φj + (λ∗)′
∑
j∈Ω

φ2
j = 0.

The symmetry of L implies that

(λ∗)′
∑
j∈Ω

φ2
j =

1
2

∑
j,k∈Ω

Ljk(φj − φk)2. (5.1)

Clearly, the right-hand side is nonnegative. We now show that it is in fact positive. We argue
by contradiction. Suppose that ∑

j,k∈Ω

Ljk(φj − φk)2 = 0. (5.2)

If φj = φ1 for all j ∈ Ω then (3.7) and the positivity of φ imply that βj − γj + λ∗ = 0 for all
j ∈ Ω. But this is impossible because H− and H+ are both nonempty. Therefore, it must be
that φm 6= φ1 for some m ∈ Ω. The irreducibility of L implies that there exists a chain from
1 to m, i.e., a sequence j1, j2, . . . , js ∈ Ω with j1 = 1 and js = m such that Ljpjp+1 > 0 for
1 ≤ p ≤ s− 1. Eq. (5.2) implies that φjp = φjp+1 for 1 ≤ p ≤ s− 1. Hence, φ1 = φm, another
contradiction. We conclude that the right-hand side of (5.1) is positive, and thus that (λ∗)′

is also positive.

(c) A variational characterization of λ∗ is given by

λ∗ = inf∑
j∈Ω

ϕ2
j=1

dI

2

∑
j,k∈Ω

Ljk(ϕj − ϕk)2 +
∑
j∈Ω

(γj − βj)ϕ2
j

 , (5.3)

and (3.7) is its corresponding Euler-Lagrange equation. Thus,

lim
dI→0

λ∗ = inf∑
j∈Ω

ϕ2
j=1

∑
j∈Ω

(γj − βj)ϕ2
j

 .

The right-hand side is minimized by setting ϕj = 1 for a single j ∈ Ω with the property that
γj − βj = min{γk − βk : k ∈ Ω} and letting ϕj = 0 otherwise.

(d) Parts (b) and (c) show that λ∗ is a strictly monotone increasing function of dI > 0 that
is bounded from below, and substituting φj = 1/

√
n for j ∈ Ω into (5.3) shows that λ∗ is

bounded from above. Therefore, λ∗ has a limit λ∗∞ ∈ (0,∞) as dI →∞. We divide both sides
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of (3.7) by dI to get∑
k∈Ω

Ljk(φk − φj) +
(βj − γj)φj

dI
+
λ∗φj

dI
= 0, j ∈ Ω. (5.4)

Without loss of generality, we may assume that φ = (φj) is a unit vector, i.e.,
∑

j∈Ω φ
2
j = 1.

It follows from the positivity of φ and compactness that φ→ φ̄, where φ̄j ≥ 0 for j ∈ Ω and∑
j∈Ω φ̄

2
j = 1, for some positive sequence of values dI →∞. Let this sequence be denoted by

d
(l)
I . Taking such a limit in (5.4) produces∑

k∈Ω

Ljk(φ̄k − φ̄j) = 0, j ∈ Ω.

We can write this equation in matrix-vector form as Aφ̄ = φ̄, where A = (Ljk/Lj). The
nonnegativity and irreducibility of A implies that φ̄ is proportional to (1, 1, . . . , 1)t, as both
vectors belong to the principal eigenvalue µ = 1. The fact that φ̄ is a nonnegative unit vector
implies that φ̄j = 1/

√
n for j ∈ Ω. Observe from the symmetry of L that

∑
j,k∈Ω Ljk(φk−φj) =

0. Therefore, summing (3.7) with dI = d
(l)
I over all j ∈ Ω yields∑

j∈Ω

(βj − γj)φj + λ∗
(
d

(l)
I

)∑
j∈Ω

φj = 0. (5.5)

We let d(l)
I →∞ to get ∑

j∈Ω

(βj − γj)φ̄j + λ∗∞
∑
j∈Ω

φ̄j = 0.

Since φ̄j = 1/
√
n for j ∈ Ω, we obtain

λ∗∞ =
1
n

∑
j∈Ω

(γj − βj) =
Σγ − Σβ

n
.

Finally, parts (e) and (f) follow directly from parts (b), (c), and (d) together with the fact that
H+ is nonempty.

Appendix C

Proof of Lemma 3.7.

(a) We argue by induction on l for I(l). If l = 0 then the result is immediate because I(0)
j = Ij =

εφj ∈ [0, 1] for j ∈ Ω. Suppose now that I(l)
j ∈ [0, 1] for 0 ≤ l ≤ s and j ∈ Ω, where s ≥ 0, but

that I(s+1)
m 6∈ [0, 1] for some m ∈ Ω. Suppose first that I(s+1)

m < 0. Without loss of generality,
we may assume that I(s+1)

m = min{I(s+1)
j : j ∈ Ω}. Eq. (3.11) with l = s and j = m implies

that
−dI

∑
k∈Ω

Lmk

(
I

(s+1)
k − I(s+1)

m

)
+MI(s+1)

m =
[
fm

(
I(s)
m

)
+M

]
I(s)
m .



Allen et al. - SIS epidemic patch model 27

Since I(s)
m ∈ [0, 1], we have, by the properties of M ,

−dI

∑
k∈Ω

Lmk

(
I

(s+1)
k − I(s+1)

m

)
+MI(s+1)

m ≥ 0.

Since MI
(s+1)
m < 0, it follows that

dI

∑
k∈Ω

Lmk

(
I

(s+1)
k − I(s+1)

m

)
< 0.

But this result contradicts the minimality of I(s+1)
m . Suppose now that I(s+1)

m > 1, and without
loss of generality, that I(s+1)

m = max{I(s+1)
j : j ∈ Ω}. Again, (3.11) with l = s and j = m

implies that

−dI

∑
k∈Ω

Lmk

(
I

(s+1)
k − I(s+1)

m

)
+MI(s+1)

m = Fm

(
I(s)
m

)
+MI(s)

m .

Since I(s)
m ∈ [0, 1], and Fm(u) +Mu is a monotone increasing function of u ∈ [0, 1], we have

Fm

(
I(s)
m

)
+MI(s)

m ≤ Fm(1) +M ≤M,

where the last inequality follows from Fm(1) = fm(1) = −γm ≤ 0. Hence

−dI

∑
k∈Ω

Lmk

(
I

(s+1)
k − I(s+1)

m

)
+MI(s+1)

m ≤M.

Since I(s+1)
m > 1, we have

−dI

∑
k∈Ω

Lmk

(
I

(s+1)
k − I(s+1)

m

)
< 0.

But this result contradicts the maximality of I(s+1)
m . We conclude that I(s+1)

j ∈ [0, 1] for all

j ∈ Ω, and by induction, I(l)
j ∈ [0, 1] for l ≥ 0 and j ∈ Ω. The argument for I [l] is similar.

(b) We argue by induction on l for ∆I(l). To show that ∆I(0) ≥ 0, we suppose otherwise and obtain
a contradiction. If ∆I(0) 6≥ 0, then there exists some m ∈ Ω such that ∆I(0)

m < 0. We may
assume that ∆I(0)

m = min{∆I(0)
j : j ∈ Ω}. Recall that ε was chosen so that G(I) = G(εφ) ≥ 0.

Eq. (3.9) with j = m and I = I(0) = I implies that

Gm

(
I(0)
)

= dI

∑
k∈Ω

Lmk

(
I

(0)
k − I(0)

m

)
+ Fm

(
I(0)
m

)
≥ 0.

It follows from this inequality and (3.11) with l = 0 and j = m that

−dI

∑
k∈Ω

Lmk

(
I

(1)
k − I(1)

m

)
+MI(1)

m ≥ dI

∑
k∈Ω

Lmk

(
I(0)
m − I

(0)
k

)
+MI(0)

m .

Therefore,
dI

∑
k∈Ω

Lmk

(
∆I(0)

k −∆I(0)
m

)
≤M∆I(0)

m < 0.
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But this result contradicts the minimality of ∆I(0)
m . We conclude that ∆I(0) ≥ 0.

Suppose now that ∆I(l) ≥ 0 for 0 ≤ l ≤ s, where s ≥ 0, but that ∆I(s+1) 6≥ 0. Then there
exists some m ∈ Ω such that ∆I(s+1)

m < 0. We may assume that ∆I(s+1)
m = min{∆I(s+1)

j : j ∈
Ω}. We subtract (3.11) with l = s and j = m from (3.11) with l = s+ 1 and j = m to get

−dI

∑
k∈Ω

Lmk

(
∆I(s+1)

k −∆I(s+1)
m

)
+M∆I(s+1)

m = Fm

(
I(s+1)
m

)
− Fm

(
I(s)
m

)
+M∆I(s)

m .

Recall from part (a) that I(s)
m and I

(s+1)
m both lie within the interval [0, 1]. There exists ζ

between I(s)
m and I(s+1)

m such that

−dI

∑
k∈Ω

Lmk

(
∆I(s+1)

k −∆I(s+1)
m

)
+M∆I(s+1)

m =
[
F ′

m(ζ) +M
]
∆I(s)

m .

The right-hand side is nonnegative because F ′
m(ζ) +M > 0 and ∆I(s)

m ≥ 0. Therefore,

dI

∑
k∈Ω

Lmk

(
∆I(s+1)

k −∆I(s+1)
m

)
≤M∆I(s+1)

m < 0.

But this result contradicts the minimality of ∆I(s+1)
m . We conclude that ∆I(s+1) ≥ 0, and by

induction, ∆I(l) ≥ 0 for l ≥ 0. The arguments for ∆I [l] and ∆I{l} are similar, except that
∆I [1] = I [1] − I [0] ≤ 0 by part (a) and ∆I{0} = I [0] − I(0) ≥ 0 is immediately clear.
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Figures

Figure 1: Nine patches connected at their boundaries.
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(a) (b)

(c) (d)

Figure 2: The limiting DFE under four parameter conditions.
(a) R0 = 1.20, R[5]

0 = 2, R[j]
0 = 1.5, and R[k]

0 = 0.5 for j = 2, 4, 6, 8 and k = 1, 3, 7, 9;
(b) R0 = 1.51, R[3]

0 = 3, R[j]
0 = 1.25, and R[k]

0 = 0.5 for j = 2, 5, 6 and k = 1, 4, 7, 8, 9;
(c) R0 = 1.58, R[3]

0 = 3, R[j]
0 = 1.5, and R[k]

0 = 0.5 for j = 2, 5, 6 and k = 1, 4, 7, 8, 9;
(d) R0 = 1.03, R[5]

0 = 3, and R[j]
0 = 0.5 for j 6= 5.


