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Abstract. A two-species Lotka-Volterra competition-diffusion model
with spatially inhomogeneous reaction terms is investigated. The two
species are assumed to be identical except for their interspecific compe-
tition coefficients. Viewing their common diffusion rate µ as a parame-
ter, we describe the bifurcation diagram of the steady states, including
stability, in terms of two real functions of µ. We also show that the
bifurcation diagram can be rather complicated. Namely, given any
two positive integers l and b, the interspecific competition coefficients
can be chosen such that there exist at least l bifurcating branches
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of positive stable steady states which connect two semi-trivial steady
states of the same type (they vanish at the same component), and at
least b other bifurcating branches of positive stable steady states that
connect semi-trivial steady states of different types.

Key words : Reaction-diffusion, competing species, spatial heterogeneity, bi-
furcation, stability
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1 Introduction

For more than two decades, the effects of the spatial heterogeneity of envi-
ronment on the invasion of new species and coexistence of multiple species
have attracted the attention of both mathematicians and ecologists. Spa-
tial heterogeneity of the environment not only seems to be crucial in creating
large amount of patterns, it also brings about interesting mathematical ques-
tions. Reaction-diffusion equations have long been used as standard models
to mathematically address questions related to spatial heterogeneity. Among
these, two-species Lotka-Volterra competition-diffusion models with spatially
heterogeneous interactions are probably most studied, see [2]-[12], [14], [18]-
[23], [27, 28, 30, 31, 33] and references therein. In this paper we consider
such equations with the goal of understanding the effect of a specific feature
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of the interaction, the difference in the interspecific competition rates, on the
coexistence of the competing species.

To motivate our discussions, we start with the semilinear parabolic system

ut = µ∆u + u [a(x)− u− v] in Ω× (0,∞), (1.1a)

vt = µ∆v + v [a(x)− u− v] in Ω× (0,∞), (1.1b)

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω× (0,∞). (1.1c)

Here u(x, t) and v(x, t) represent the densities of two competing species at
location x and time t, the habitat Ω is a bounded region in RN with smooth
boundary ∂Ω, and n is the outward unit normal vector on ∂Ω. The zero-flux
boundary condition (1.1c) means that no individuals cross the boundary of
the habitat. The diffusion rate µ is a positive constant, and a(x) denotes the
intrinsic growth rate of species. Observe that in this system the two species
are identical in all aspects. This means, in effect, that u + v can be view
as the density of one species, and, after adding up the two equations, the
system reduces to a scalar logistic reaction-diffusion equation.

From another point of view, the special form of the system means that
under natural assumptions, there is a stable curve of steady states which
attracts all solutions with nonnegative nontrivial initial data. It is an inter-
esting problem, both mathematically and biologically, to determine how this
structure changes under small perturbations.

To make the discussion of the problem more specific, we make the follow-
ing standing hypotheses on the function a(x).

(A1) The function a(x) is nonconstant, Hölder continuous in Ω, and
∫

Ω a >
0.

It is well-known that if (A1) holds, the scalar equation

µ∆θ + θ[a(x)− θ] = 0 in Ω,
∂θ

∂n

∣∣∣
∂Ω

= 0 (1.2)

has a unique positive solution θ ∈ C2(Ω) for every µ > 0. Moreover, θ
is linearly stable, in particular it is nondegenerate. Hence, by the implicit
function theorem, θ depends analytically (as a W 2,p(Ω)-valued function, for
any p > 1) on µ ∈ (0,∞) and a(x) ∈ C(Ω). The following asymptotic
behaviors of θ are also well-known (see, e.g., [5, 20]), and will be needed
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later:

lim
µ→0+

θ = a+, (1.3a)

lim
µ→∞

θ =
1

|Ω|

∫

Ω

a(x) dx (1.3b)

in L∞(Ω), where a+(x) = max{a(x), 0}. Hence, we may define θ(0) = a+

and θ(∞) =
∫

Ω a/|Ω|.
A steady state (ue, ve) with both components positive is referred as a

coexistence state; (ue, ve) is called a semi-trivial steady state if one component
is positive and the other one is zero.

By assumption (A1), we see that (1.1) has a family of coexistence states,
given by {(sθ, (1− s)θ) : 0 < s < 1} . Moreover, for any nonnegative non-
trivial initial data, the solution of (1.1) converges to (s0θ, (1− s0)θ) for some
s0 ∈ (0, 1), where s0 depends on the initial data. This is a consequence of the
special structure of the problem mentioned above. The following question
arises quite naturally.

Question. What happens when the two species are slightly different, that
is, when system (1.1) is perturbed?

Biologically, the question is motivated by the following considerations.
Consider a species with intrinsic growth rate a(x), and suppose that random
mutation produces a phenotype of species which is slightly different from
the original species, for example it has different diffusion rates, or different
intrinsic growth rates. It is fairly reasonable to expect that in the race
for survival, these two species might have to compete for the same limited
resources. The major concern is whether the mutant can invade when rare;
if so, will the mutant force the extinction of the original species or coexist
with it?

Mathematically, the question leads to the study of various perturbations
of system (1.1) and various bifurcation diagrams. Several interesting and
surprising phenomena have already been revealed using this approach. One
of the first works in this direction appears in [9], where the authors study
the parabolic system

ut = µ∆u + u[a(x)− u− v] in Ω× (0,∞), (1.4a)

vt = (µ + τ)∆v + v[a(x)− u− v] in Ω× (0,∞), (1.4b)

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω× (0,∞), (1.4c)
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where τ is a nonzero constant. Here, the original species and the mutant are
identical except for their diffusion rates. Among other things, it is shown
in [9] that if (A1) holds and τ > 0, then (u, v) → (θ, 0) as t → ∞ for any
nonnegative nontrivial initial data. Biologically, this implies that if the two
species interact identically with the environment, then the slower diffuser
always drive the faster diffuser to extinction, and there is no coexistence
state in such scenario. Similar results hold true for the case of nonlocal
dispersions, and we refer to [25] for the details. However, when the intrinsic
growth rate is periodic in time, it is shown in [21] that the slower diffuser
may not always be the winner.

In [24] another perturbation of (1.1) is considered. The system studied
there has the form

ut = µ∆u + u[a(x) + τg(x)− u− v] in Ω× (0,∞), (1.5a)

vt = µ∆v + v[a(x)− u− v] in Ω× (0,∞), (1.5b)

∂u

∂n
=

∂v

∂n
= 0 on Ω× (0,∞). (1.5c)

Here the two species are almost identical except for their intrinsic growth
rates which differ by a function of τg(x), where τ is a positive constant and
g(x) is a smooth function. In this situation, a new phenomenon is discovered.
By (A1), for small τ , (1.5) has two semi-trivial states in the form of (ũ, 0)
and (0, θ) for every µ > 0. For small τ , it is shown in [24] that for any fixed
positive integer k, one can choose the function g such that (ũ, 0) and (0, θ)
exchange their stability at least k times as the diffusion rate µ varies over
(0,∞). As a consequence, there are at least k branches of coexistence states
of (1.5) which connect (ũ, 0) and (0, θ). Biologically, this implies that with
small variations of the phenotype, the stability of the two species varies with
diffusion in a very complex manner, and it is unpredictable which species will
survive. Even though the two species can coexist, they do so only for very
narrow regions of µ: the projection of these branches of coexistence states
onto µ-axis is of the length of O(τ).

One of the goals of this paper is to study another perturbation of (1.1).
We consider the system

ut = µ∆u + u {a(x)− u− [1 + τg(x)]v} in Ω× (0,∞), (1.6a)

vt = µ∆v + v {a(x)− v − [1 + τh(x)]u} in Ω× (0,∞), (1.6b)

∂u

∂n
=

∂v

∂n
= 0 on Ω× (0,∞). (1.6c)
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Thus now the two species are almost identical except for their interspecific
competition rates which are given by 1 + τg(x) and 1 + τh(x), respectively,
where τ is a positive constant and g(x), h(x) are two smooth functions.
As it turns out, within this model new structure of coexistence equilibria is
observed. In fact, the bifurcation diagram (viewing µ as a parameter again)
can differ considerably from the diagrams found in the previous models. On
the other hand, it is interesting that, similarly as in [24], the bifurcation
diagram can be described completely in terms of simple real functions of µ.

Let us refer to u, v as the densities of the original species and the mutant,
respectively. Define

Ω+ = {x ∈ Ω : g(x) > 0 > h(x)}, Ω− = {x ∈ Ω : g(x) < 0 < h(x)}.

In Ω+, the mutant has competitive advantage: if the diffusion is not present,
then the mutant not only can invade, but also goes to fixation, that is, it
forces the extinction of the original phenotype. The outcome is reversed in
Ω−, where the original species has competitive advantage: without diffusion,
the mutant goes to extinction in Ω−. Biologically, when diffusion is present,
it would be very interesting to find out whether the mutant can coexist
with the original species if Ω+ is nonempty, and/or whether the mutant can
invade even if Ω− is nonempty. Clearly, such phenomena can occur only when
spatial heterogeneity is involved since the answer is negative if both g and h
are constant functions. The goal of this paper is to show that for suitably
chosen smooth functions g and h with Ω+ and/or Ω− being nonempty, the
two species can coexist for a wide range of diffusion rates.

Since g and h can be rather general, the dynamics of (1.6) and the struc-
tures of coexistence states can potentially be very complicated, and it seems
impossible to find any simple criteria which could characterize them. How-
ever, quite amazingly, for small τ , the dynamics and coexistence states of
(1.6) essentially depend on two scalar functions of µ ∈ (0,∞) defined as
follows

G(µ) =

∫

Ω

g(x)θ3(x, µ) dx, (1.7a)

H(µ) =

∫

Ω

h(x)θ3(x, µ) dx. (1.7b)

The following theorem shows how G and H determine the structure of coex-
istence states and their stability.
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Theorem 1.1. Assume that functions G and H have no common roots. Let
µ1 and µ2 be two consecutive roots of the function GH and assume that they
are both simple roots.

(i) If GH < 0 in (µ1, µ2), then for µ ∈ [µ1, µ2], system (1.6) has no
coexistence states provided that τ is small and positive.

(ii) If GH > 0 in (µ1, µ2), then for each sufficiently small τ > 0 there
exist numbers µ = µ(τ) ≈ µ1, µ = µ(τ) ≈ µ2 and a smooth C(Ω̄) ×
C(Ω̄)-valued function µ '→ (u(µ), v(µ)) on [µ, µ] such that for each
µ ∈ (µ, µ) the pair (u(µ), v(µ)) is a unique coexistence state of (1.6) and
(u(µ), v(µ)), (u(µ), v(µ)), are semitrivial states of (1.6). Moreover,
the coexistence state (u(µ), v(µ)) is stable if both G(µ) and H(µ) are
negative in (µ1, µ2) and it is unstable if both G(µ) and H(µ) are positive
in (µ1, µ2).

In statement (ii) of the theorem, the following two possibilities can occur:

(a) (u(µ), v(µ)) and (u(µ), v(µ)) are semi-trivial states of the same type,
that is, each of them equals (θ(µ), 0) (at the corresponding value of µ)
or each of them equals (0, θ(µ)),

(b) (u(µ), v(µ)) and (u(µ), v(µ)) are of different types: one of them equals
(θ(µ), 0) and the other one equals (0, θ(µ)).

Abusing the language slightly, in the case (a) we call the curve {(u(µ), v(µ)) :
µ ∈ (µ, µ)} a branch between µ and µ; in the case (b) we call it a loop. If the
coexistence states on the branch or loop are stable we call it a stable branch
or a stable loop, respectively. See Figure 1.

The next result states that (1.6) can have an arbitrarily high number of
stable loops and branches.

Theorem 1.2. Suppose that (A1) holds, a ∈ Cγ(Ω) and a3
+ (∈ Cγ+1(Ω) for

some γ > 0. Then, for any given positive integers l and b, there exist smooth
functions g and h such that (1.6) has at least l stable loops and at least b
stable branches for each sufficiently small τ > 0.

Theorem 1.2 reveals complex and intriguing effects of diffusion and spatial
heterogeneity of the environment on the invasion of rare species and coex-
istence of interacting species. The existence of (stable) loops appears to be
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Figure 1:
A stable branch and a stable loop. The vertical axis is r = ‖u‖/(‖u‖+ ‖v‖);
the semitrivial steady states correspond to r = 0 and r = 1.

a new phenomenon, it does not occur in the model studied in [24]. Also, in
contrast to the results of [24], the range of coexistence in terms of µ, that is,
the projection of a branch or loop of coexistence states onto the µ−axis, is
of order O(1) as τ → 0.

The reminder of paper is organized as follows. Section 2 contains pre-
liminary material on local and global asymptotic stability of coexistence and
semi-trivial states of (1.6). In Section 3 we discuss the local stability of semi-
trivial states of (1.6). In theorems proved there, we do not restrict to the
case of small τ . Section 4 is devoted to results on the existence and stability
of coexistence states and the bifurcation of branches and loops. In partic-
ular, Theorem 1.1 is proved in Subsection 4.3 and Theorem 1.2 is proved
Subsection 4.4.

2 Preliminaries

In this section we summarize some statements regarding the stability of
steady states of (1.6) for later purposes. Since the materials here are similar
to those in Section 2 of [24], our discussions will be brief and we refer to [24]
for details.

By standard theory (see, e.g., [15, 29]), (1.6) is well posed on X :=
C(Ω) × C(Ω), in fact, it defines a smooth dynamical system on X . The
stability of steady states of (1.6) is understood with respect to the topology
of X . We say an equilibrium (ue, ve) is the global attractor if it is stable and for
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each nontrivial initial data (u0, v0) ∈ X with u0 ≥ 0, v0 ≥ 0, (u(·, t), v(·, t))
converges uniformly to (ue, ve) as t→∞, where (u(·, t), v(·, t)) is the solution
of (1.6) with the initial data (u0, v0).

Due to the monotonicity of two species Lotka-Volterra competition sys-
tems, we have the following well known results (see [17, Chapt. 4]):

(a) If there is no coexistence state, then one of the semi-trivial equilibria
is unstable and the other one is the global attractor.

(b) If there is a unique coexistence state and it is stable, then it is the global
attractor (in particular, both semi-trivial equilibria are unstable)

(c) If all coexistence states are asymptotically stable, then there is at most
one of them.

For the linearized stability of a steady state (u, v) of (1.6), it suffices to
consider the eigenvalue problem

µ∆ϕ + [a− 2u− (1 + τg)v]ϕ + (−u)(1 + τg)ψ = −λϕ in Ω, (2.1a)

µ∆ψ + (−v)(1 + τh)ϕ + [a− (1 + τh)u− 2v]ψ = −λψ in Ω, (2.1b)

∂ϕ

∂n
=

∂ψ

∂n
= 0 on ∂Ω. (2.1c)

It is well known (see, e.g. [17]) that (2.1) has a principal eigenvalue λ1 which
is real, algebraically simple and all other eigenvalues have their real parts
greater than λ1. Moreover, there is an eigenfunction (ϕ, ψ) associated to λ1

satisfying ϕ > 0, ψ < 0, and λ1 is the only eigenvalue with such positivity
property. The linearized stability of (u, v) is determined by the sign of the
principal eigenvalue: (u, v) is stable if λ1 > 0; it is unstable if λ1 < 0.

When (u, v) is a semi-trivial state, e.g., (u, v) = (θ, 0), then (2.1) simplifies
to a triangular system and the stability of (θ, 0) is determined by the principal
eigenvalue of the scalar problem

µ∆ψ + [a− (1 + τh)θ]ψ = −λψ in Ω,
∂ψ

∂n

∣∣
∂Ω

= 0. (2.2)

Similarly, if (u, v) = (0, θ), then the principal eigenvalue of (2.1) coincides
with the principal eigenvalue of the scalar problem

µ∆ϕ + [a− (1 + τg)θ]ϕ = −λϕ in Ω,
∂ϕ

∂n

∣∣
∂Ω

= 0. (2.3)
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We remark that since the principal eigenvalue is always simple, it inherits
the smoothness properties of the data in the problem. Indeed, since θ(·, µ)
is analytic in µ, by standard analytic perturbation theory (see [26]), the
principal eigenvalue of (2.1) is an analytic function of τ > 0 and µ > 0.

3 Stability of semi-trivial steady states

The goal of this section is to study the linearized stability of the semi-trivial
steady states (θ, 0) and (0, θ) of (1.6) for general τ > 0, and the main results
are Theorems 3.4-3.7. We shall focus on the stability of (θ, 0), the discussion
for (0, θ) is similar. Here, of course, θ = θ(·, µ) depends on µ, although we
often omit the argument µ for brevity.

Let λ1 be the principal eigenvalue of (2.2) and ψ1 be the corresponding
eigenfunction such that ψ1 > 0 in Ω and maxΩ ψ1 = 1. Hence we have

µ∆ψ1 + [a− (1 + τh)θ]ψ1 = −λ1ψ1 in Ω,
∂ψ1

∂n

∣∣∣
∂Ω

= 0. (3.1)

Define ψ∗ by ψ1 = θψ∗. By (3.1) and (1.2), we see that ψ∗ satisfies

µ(θ∆ψ∗ + 2∇θ · ∇ψ∗)− τhθ2ψ∗ = −λ1θψ
∗ in Ω,

∂ψ∗

∂n

∣∣∣
∂Ω

= 0. (3.2)

Multiplying the first equation in (3.2) by θ, we can rewrite (3.2) as

µ∇ · (θ2∇ψ∗)− τhθ3ψ∗ = −λ1θ
2ψ∗ in Ω,

∂ψ∗

∂n

∣∣∣
∂Ω

= 0. (3.3)

For every µ > 0, define

C(µ) := inf
ψ∈Sµ

∫
Ω θ2|∇ψ|2 dx

−
∫

Ω hθ3ψ2 dx
, (3.4)

where

Sµ =

{
ψ ∈ H1(Ω) :

∫

Ω

hθ3ψ2 dx < 0

}
. (3.5)

We set C(µ) = +∞ if Sµ = ∅, that is, if h ≥ 0. Clearly, C(µ) ≥ 0. It is
well known (see, e.g., [5]) that C(µ) > 0 if and only if h changes sign and∫

Ω h(x)θ3(x, µ) dx > 0. By (3.3) and (3.4), the connection between λ1 and
C(µ) is given by the following lemma. Its proof is very similar to the proof
of Lemma 3.1 in [24] and we refer the reader to that paper.
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Lemma 3.1. Given τ > 0, λ1 > 0 if τ < µC(µ), λ1 = 0 if τ = µC(µ) and
λ1 < 0 if τ > µC(µ).

In particular, if
∫

Ω h(x)θ3(x, µ) dx ≤ 0, then C(µ) = 0 and λ1 < 0 for any
τ > 0, i.e., (θ, 0) is always unstable; If h ≥ 0, (θ, 0) is always stable.

In this section, we also assume that

(A2) H(0) (= 0 (= H(∞), the equation H(µ) = 0 has only finitely many
solutions 0 < µ1 < µ2 < ... < µk <∞ in (0,∞) and they are all simple.

(A3) {x ∈ Ω : h(x) < 0} ∩ {x ∈ Ω : a(x) > 0} (= ∅.
Under assumption (A2), there are four cases for us to consider:

I. H(0) > 0, H(∞) > 0;
II. H(0) > 0 > H(∞);
III. H(0) < 0 < H(∞);
IV. H(0) < 0, H(∞) < 0.

We first establish the following result.

Lemma 3.2. Suppose that (A3) holds. Then

lim
µ→0+

µC(µ) = 0. (3.6)

Proof. As µ → 0+, we have θ → a+ in L∞. By (A3), we can find ψ0

such that ψ0 ∈ C1(Ω̄) has compact support in {h < 0} ∩ {a > 0} and∫
Ω ha3

+ψ2
0 dx < 0. Hence, for µ small,

∫

Ω

hθ3ψ2
0 dx ≤ 1

2

∫

Ω

ha3
+ψ2

0 dx < 0. (3.7)

By (1.2) and the maximum principle [32], we have ‖θ‖L∞ ≤ ‖a‖L∞ . Choose
ψ = ψ0 in (3.4). By (3.7),

C(µ) ≤
∫

Ω θ2|∇ψ0|2 dx

−
∫

Ω hθ3ψ2
0 dx

≤
2‖a‖2

L∞
∫

Ω |∇ψ0|2 dx

−
∫

Ω ha3
+ψ2

0 dx
< +∞ (3.8)

for small µ > 0. Hence, C(µ) is uniformly bounded for small µ, which implies
that (3.6) holds. !
Lemma 3.3. Suppose that h changes sign,

∫
Ω h > 0, and

∫
Ω a > 0. Then

limµ→∞C(µ) = |Ω|C∞/(
∫

Ω a dx) > 0, where

C∞ = inf
{ψ∈H1(Ω):

R
Ω hψ2<0}

∫
Ω |∇ψ|2 dx

−
∫

Ω hψ2 dx
> 0. (3.9)
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Proof. Since h changes sign and
∫

Ω h > 0, we have C∞ > 0. The rest of
Lemma 3.3 follows from (1.3b). !

We say that the steady state (θ, 0) (or (0, θ)) changes stability at µ0 if
for µ close to µ0 the steady state is stable on one side of µ0 and unstable on
the other side of µ0. A steady state changes stability k times if it changes
stability at k different values of µ.

In Case I, the function H has an even number of roots, hence, k = 2l for
some l ≥ 1. In this situation, we have the following stability result for (θ, 0).

Theorem 3.4. Suppose that function H is as in Case I, and assumptions
(A1)-(A3) hold. Then, for every fixed τ > 0, (θ, 0) is unstable for small µ and
stable for large µ. Moreover, there exist {τi}l

i=0 with 0 = τ0 < τ1 ≤ ... ≤ τl

such that for every 1 ≤ i ≤ l and every τ ∈ (τi−1, τi), (θ, 0) changes stability
at least 2(l − i) + 3 times.

Proof. By Lemma 3.2, τ > µC(µ) if µ / 1. Hence, by Lemma 3.1, we
see that (θ, 0) is unstable for small µ. By Lemma 3.3, limµ→∞ µC(µ) = ∞,
which implies that τ < µC(µ) for µ0 1. Therefore, by Lemma 3.1, (θ, 0) is
stable for large µ.

Set µ0 = 0. By Lemma 3.1 and assumption (A2), we see that µC(µ)
is positive in ∪l

i=1(µ2i−2, µ2i−1) ∪ (µ2l,∞) and is zero elsewhere. For every
i = 1, ..., l, define Mi = maxµ∈[µ2i−2,µ2i−1] µC(µ). We reorder {Mi}l

i=1 into
an ordered set {τi}l

i=1 with 0 = τ0 < τ1 ≤ ... ≤ τl. For every 1 ≤ i ≤ l
and every τ ∈ (τi−1, τi), µC(µ) = τ has at least 2(l − i) + 3 roots, one of
which lies in the interval (µ2l,∞) since C(µ2l) = 0 and limµ→∞ µC(µ) = ∞
. Furthermore, µC(µ)− τ changes sign at least 2(l− i) + 3 times: if not, the
only possibility is that there exists an interval [µ, µ̄] which is contained in
∪l

i=1(µ2i−2, µ2i−1)∪(µ2l,∞) such that µC(µ) ≡ τ in [µ, µ̄]. By Lemma 3.1, we
obtain λ1(µ, τ) ≡ 0 for every µ ∈ [µ, µ̄]. Since λ1 is analytic in µ, λ1(µ, τ) ≡ 0
for every µ > 0, which contradicts λ1 < 0 for small µ. Therefore, by Lemma
3.1, (θ, 0) changes stability at least 2(l − i) + 3 times. This completes the
proof of Theorem 3.4. !

Similar results hold for Cases II-IV. Since the proofs are rather similar,
we omit them and state only the conclusions accordingly. In Case II, k is
odd. Hence, we may assume that k = 2l − 1 for some l ≥ 1. We then have
the following result.
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Theorem 3.5. Suppose that function H is as in Case II and assumptions
(A1)-(A3) hold. Then for every fixed τ > 0, (θ, 0) is unstable for both small
µ and large µ. Moreover, there exist {τi}l

i=0 with 0 = τ0 < τ1 ≤ ... ≤ τl such
that for every 1 ≤ i ≤ l and every τ ∈ (τi−1, τi), (θ, 0) changes stability at
least 2(l − i) + 2 times.

In Case III, k is odd: k = 2l − 1 for some l ≥ 1. The following result
holds true.

Theorem 3.6. Suppose that function H is as in Case III, and assumptions
(A1)-(A3) hold. Then for every τ > 0, (θ, 0) is unstable for small µ and is
stable for large µ. Moreover, if l ≥ 2, there exist {τi}l−1

i=0 with 0 = τ0 < τ1 ≤
... ≤ τl−1 such that for every 1 ≤ i ≤ l − 1 and τ ∈ (τi−1, τi), (θ, 0) changes
stability at least 2(l − i) + 1 times.

Finally, in Case IV, k is even, k = 2l for some l ≥ 1, and the following
holds true.

Theorem 3.7. Suppose that function H is as in Case IV, and assumptions
(A1)-(A3) hold. Then for every τ > 0, (θ, 0) is unstable for both small and
large µ. Moreover, there exist {τi}l

i=0 with 0 = τ0 < τ1 ≤ ... ≤ τl such that
for every 1 ≤ i ≤ l and every τ ∈ (τi−1, τi), (θ, 0) changes stability at least
2(l − i) + 2 times.

Remark 3.8. If assumption (A2) does not hold, we can still show that (θ, 0)
changes stability various times in some cases: (i) If H(0) > 0 > H(∞)
and assumption (A3) holds, then there exists τ1 > 0 such that for every
τ ∈ (0, τ1), (θ, 0) changes stability at least twice; (ii) If H(0) < 0 < H(∞),
then for every τ > 0, as µ varies, (θ, 0) changes stability at least once. The
proofs of these results are similar to that of Theorem 3.4, and are omitted.

4 Coexistence states and their stability

In this section we will focus on the existence and stability of coexistence
states when τ / 1 and µ stays away from zero. In Subsection 4.1 we will
parameterize the branches of coexistence states using a Lyapunov-Schmidt
reduction for τ / 1 and for µ between two consecutive roots of GH. Sub-
section 4.2 is devoted to the study of stability of coexistence states found in
Subsection 4.1. Finally, we prove Theorems 1.1 and 1.2 in Subsections 4.3
and 4.4, respectively.
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4.1 Lyapunov-Schmidt reduction

Consider the system

µ∆u + u[a− u− (1 + τg)v] = 0 in Ω, (4.1a)

µ∆v + v[a− v − (1 + τh)u] = 0 in Ω, (4.1b)

∂u

∂n
=

∂v

∂n
= 0 on ∂Ω. (4.1c)

Referring to solutions of (4.1), we mean, depending on the context, either
a pair (u, v) satisfying the equations and the boundary condition (with µ
fixed) or a triple (µ, u, v) satisfying (4.1). Also we only consider nontrivial
solutions, regardless of whether this is mentioned explicitly or not.

In this subsection we are concerned with solutions near the surface

Σ = {(µ, sθ(µ), (1− s)θ(µ)) : µ ∈ [µ1, µ2], s ∈ [0, 1]} , (4.2)

where µ1 and µ2 are consecutive roots of GH. Note that for every µ > 0,

Σµ := {(sθ(µ), (1− s)θ(µ)) : s ∈ [0, 1]} (4.3)

is the set of nontrivial nonnegative solutions of (4.1) when τ = 0.
Choose p > N , so that the Sobolev space W 2,p(Ω) is continuously imbed-

ded in C1(Ω). Set

X =

{
(y, z) ∈ W 2,p(Ω)×W 2,p(Ω) :

∂y

∂n
=

∂z

∂n
= 0 on ∂Ω

}
, (4.4a)

X1 = span {(θ,−θ)} , (4.4b)

X2 =

{
(y, z) ∈ X :

∫

Ω

(y − z)θ dx = 0

}
, (4.4c)

Y = Lp(Ω)× Lp(Ω). (4.4d)

The rest of this subsection is devoted the proof of the following result.

Theorem 4.1. Assume that functions G and H have no common roots, and
let µ1 and µ2 be two consecutive roots of function GH.

(i) If GH < 0 in (µ1, µ2), then system (4.1) has no coexistence states near
Σ provided that τ is small and positive.
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(ii) If GH > 0 in (µ1, µ2), then there exists a neighborhood U of Σ and δ > 0
such that for τ ∈ (0, δ), the set of solutions of (4.1) in U consists of
the semitrivial solutions (µ, θ(·, µ), 0), (µ, 0, θ(·, µ)), and the set Γ∩U ,
where

Γ = {(µ, u(µ, τ), v(µ, τ)) : µ1 − δ ≤ µ ≤ µ2 + δ} .

Here

u(µ, τ) = s∗(µ, τ)[θ(·, µ) + ȳ(µ, τ)], (4.5a)

v(µ, τ) = [1− s∗(µ, τ)][θ(·, µ) + z̄(µ, τ)], (4.5b)

for some smooth functions s∗ and (ȳ, z̄) taking values in R and X2,
respectively, and satisfying

s∗(µ, 0) = s0(µ) := G(µ)/[G(µ)+H(µ)], ȳ(µ, 0) = z̄(µ, 0) = 0. (4.6)

Moreover, if µ1 and µ2 are simple roots of GH, then there are smooth
functions µ(τ) and µ(τ) on [0, δ) such that µ(0) = µ1, µ(0) = µ2,
and for any τ ∈ [0, δ) one has s∗(µ, τ)[1 − s∗(µ, τ)] = 0 with µ ∈
(µ1 − δ, µ2 + δ) if and only if µ ∈ {µ(τ), µ(τ)}.

Remark 4.2. Note that since θ(µ) > 0 in Ω̄, (4.5) and (4.6) imply that for
τ sufficiently small we have u(µ, τ) > 0, v(µ, τ) > 0 if and only if s∗(µ, τ) ∈
(0, 1). The last statement of the theorem implies that this is true if and only
if µ ∈ (µ(τ), µ(τ)).

Proof of Theorem 4.1. Clearly, each solution of (4.1) near Σ can be
written as

(u, v) = (sθ(·, µ), (1− s)θ(·, µ)) + (y, z), (4.7)

where s ∈ R, and (y, z) ∈ X2 is in a neighborhood of (0, 0). We thus seek
the solutions in this form.

For some small constant δ1 > 0, define the map F : X × (µ1 − δ1, µ2 +
δ1)× (−δ1, δ1)× (−δ1, 1 + δ1) → Y by

F (y, z, µ, τ, s) =

(
µ∆y + (a− θ)y − sθ(y + z) + f1(y, z, µ, τ, s)

µ∆z + (a− θ)z − (1− s)θ(y + z) + f2(y, z, µ, τ, s)

)
,

(4.8)
where

f1(y, z, µ, τ, s) = −y(y + z)− sτgθ[(1− s)θ + z)]− τgy[(1− s)θ) + z],

f2(y, z, µ, τ, s) = −z(y + z)− (1− s)τhθ(sθ + z)− τhz(sθ + y)
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(and we suppress the argument µ of θ as usual). Clearly F is smooth and, by
(1.2), (u, v) given by (4.7) satisfies (4.1) if and only if F (y, z, µ, τ, s) = (0, 0)T .
Note that we have the following identities

F (0, 0, 0, µ, 0, s) = 0, F (0, 0, µ, τ, 0) = F (0, 0, µ, τ, 1) = 0 (4.9)

for all admissible values of µ, s and τ .
Define the linearized operator L(µ, s) : X → Y by

L(µ, s) = D(y,z)F (0, 0, µ, 0, s). (4.10)

By a direct calculation, we see that L = L(µ, s) is given by

L

(
ϕ

ψ

)
=

(
µ∆ϕ + (a− θ)ϕ− sθ(ϕ + ψ)

µ∆ψ + (a− θ)ψ − (1− s)θ(ϕ + ψ)

)
. (4.11)

Since X is compactly imbedded in Y , L is a Fredholm operator of index zero.
We claim that

ker(L) = span {(θ,−θ)} = X1, (4.12a)

R(L) =

{
(y, z) ∈ Y : (1− s)

∫

Ω

θy dx− s

∫

Ω

θz dx = 0

}
, (4.12b)

where R(L) stands for the range of L. To show this, first observe that (θ,−θ)
is in ker(L). Using the fact that the principal eigenvalue of L, when viewed
as operator on Y with domain X, is simple (cf. Section 2), one then verifies
that the kernel is given by (4.12a).

Now define the operator P = P (µ, s) on Y by

P

(
y

z

)
=

1∫
Ω θ2(x, µ) dx

[∫

Ω

θ [(1− s)y − sz] dx

](
θ

−θ

)
. (4.13)

Then R(P ) = X1 and one easily verifies that

P 2 = P, PL = 0. (4.14)

Hence P is the projection on the kernel of L which commutes with L. This
in particular proves (4.12b).
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Following the Lyapunov-Schmidt procedure, we consider the system

P (µ, s)F (y, z, µ, τ, s) = 0, (4.15a)

[I − P (µ, s)]F (y, z, µ, τ, s) = 0, (4.15b)

where (y, z) ∈ X2. Since L(µ, s) is an isomorphism from X2 to R(L(µ, s)), we
can apply the implicit function theorem to solve (4.15b) for (y, z). Combining
this with a compactness argument, we conclude that there exist δ2 > 0, a
neighborhood U1 of (0, 0) in X2, and a smooth function

(y1(µ, τ, s), z1(µ, τ, s)) : (µ1 − δ2, µ2 + δ2)× (−δ2, δ2)× (−δ2, 1 + δ2) → X2

such that y1(µ, 0, s) = z1(µ, 0, s) = 0 and (y, z, µ, τ, s) ∈ U1 × (µ1 − δ2, µ2 +
δ2) × (−δ2, δ2) × (−δ2, 1 + δ2) satisfies F (y, z, µ, τ, s) = 0 if and only if y =
y1(µ, τ, s), z = z1(µ, τ, s), and (µ, τ, s) solves

P (µ, s)F (y1(µ, τ, s), z1(µ, τ, s), µ, τ, s) = 0. (4.16)

Using in particular the immediate solutions given (4.9), we obtain

y1(µ, 0, s) = z1(µ, 0, s) = 0, (4.17a)

y1(µ, τ, 0) = z1(µ, τ, 0) = 0, (4.17b)

y1(µ, τ, 1) = z1(µ, τ, 1) = 0. (4.17c)

By (4.13), there exists a smooth scalar function ξ(µ, τ, s) such that

ξ(µ, τ, s)

(
θ(·, µ)

−θ(·, µ)

)
= P (µ, s)F (y1(µ, τ, s), z1(µ, τ, s), µ, τ, s). (4.18)

Hence, it suffices to solve ξ(µ, τ, s) = 0. We first establish some properties of
ξ(µ, τ, s). By (4.9) and (4.17) we have

ξ(µ, 0, s) ≡ 0, (4.19)

ξ(µ, τ, 0) = ξ(µ, τ, 1) ≡ 0. (4.20)

These relations imply that ξ(µ, τ, s) can be expressed as

ξ(µ, τ, s) = τs(1− s)ξ1(µ, τ, s) (4.21)

for some smooth function ξ1. Thus, we need to solve ξ1(µ, τ, s) = 0.
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Differentiating both sides of (4.18) with respect to τ at τ = 0 and recalling
the fact that y1(µ, 0, s) = z1(µ, 0, s) = 0 we find

ξτ (µ, 0, s)

(
θ(·, µ)

−θ(·, µ)

)
= P (µ, s)L(µ, s)

(
y1,τ (µ, 0, s)

z1,τ (µ, 0, s)

)

+ P (µ, s)Fτ (0, 0, µ, 0, s) = P (µ, s)Fτ (0, 0, µ, 0, s), (4.22)

where the second equality follows from (4.14). From (4.8) we obtain

Fτ (0, 0, µ, 0, s) = −s(1− s)

(
gθ2(·, µ)

hθ2(·, µ)

)
. (4.23)

Hence,

P (µ, s)Fτ (0, 0, µ, 0, s) = s(1− s)
sH(µ)− (1− s)G(µ)∫

Ω θ2(·, µ) dx

(
θ(·, µ)

−θ(·, µ)

)
. (4.24)

By (4.21), (4.22), and (4.24) we have

ξ1(µ, 0, s) =
sH(µ)− (1− s)G(µ)∫

Ω θ2(·, µ) dx
. (4.25)

If G(µ̃)H(µ̃) < 0, choosing δ2 smaller if necessary, by (4.25) we see that
the equation ξ1(µ, τ, s) = 0 has no solution in the domain (µ̃− δ2, µ̃ + δ2)×
(−δ2, δ2)× (−δ2, 1 + δ2). By a finite covering argument, the equation has no
solution in (µ1 − δ2, µ2 + δ2) × (−δ2, δ2) × (−δ2, 1 + δ2), if δ2 > 0 is small
enough. It follows that (4.1) has no coexistence states near Σ. This proves
part (i).

For the proof of (ii) assume that GH > 0 in (µ1, µ2). It is clear that
s0(µ) = G(µ)/[G(µ) + H(µ)] is the unique zero of ξ1(µ, 0, ·) and

ξ1,s(µ, 0, s) =
G(µ) + H(µ)∫

Ω θ2(·, µ) dx
(= 0. (4.26)

Therefore, by the implicit function theorem, for any µ̃ ∈ [µ1, µ2] there exists
δ3 > 0 such that all solutions of ξ1(µ, τ, s) = 0 in the neighborhood (µ̃−δ3, µ̃+
δ3)× (−δ3, δ3)× (−δ3, 1 + δ3) are given by s = s∗(µ, τ) for τ ∈ (−δ3, δ3) and
µ ∈ (µ̃− δ3, µ̃ + δ3), where s∗(µ, τ) is a smooth function satisfying s∗(µ, 0) =
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s0(µ). A finite covering argument in the µ interval shows that the above
assertion still holds for (µ, τ, s) ∈ (µ1− δ3, µ2 + δ3)× (−δ3, δ3)× (−δ3, 1 + δ3)
provided that δ3 is chosen smaller if necessary. Hence the set of solutions
of ξ(µ, τ, s) = 0 consists exactly of the surfaces τ = 0, s = 0, s = 1, and
s = s∗(µ, τ).

Summarizing the above conclusions, we have found out that the solutions
(µ, u, v) of (4.1) near Σ, aside from the semitrivial ones, are given by (4.7)
with y = y1(µ, τ, s), z = z1(µ, τ, s) and s = s∗(µ, τ). By (4.17b), (4.17c), we
can write

(y1(µ, τ, s), z1(µ, τ, s)) = (sỹ1(µ, τ, s), (1− s)z̃1(µ, τ, s))

for some smooth functions ỹ1, z̃1. Thus the solutions can be represented as
in (4.5) with

ȳ(µ, τ) = ỹ1(µ, τ, s∗(µ, τ)), z̄(µ, τ) = z̃1(µ, τ, s∗(µ, τ)).

To prove the last statement of the theorem, we consider the case G(µ1) =
0, i.e., s0(µ1) = 0; the case H(µ1) = 0, i.e. 1− s0(µ1) = 0, is analogous. For
small τ > 0, we look for solutions of s∗(µ, τ) = 0 near µ1. Since s∗(µ, 0) =
G(µ)/[G(µ) + H(µ)], we have s∗(µ1, 0) = 0 and s∗µ(µ1, 0) = G′(µ1)/H(µ1) (=
0. By the implicit function theorem, there exist δ4 > 0 and a smooth function
µ on [0, δ4) such that µ(0) = µ1 and µ = µ(τ) is the unique solution of
s∗(µ, τ) = 0 near µ1. Similarly one proves the existence of a function µ(τ)
which gives the unique solution of s∗(µ, τ)(1 − s∗(µ, τ)) = 0 near µ2. Since
s∗(µ, τ) ≈ s0(µ), it is clear that for small δ there are no other solutions of
s∗(µ, τ)(1 − s∗(µ, τ)) = 0 in (µ1 − δ, µ2 + δ) if τ ∈ (0, δ). The proof is now
complete. !

4.2 Stability of coexistence states

In this subsection we study the stability of the branch of solutions of (4.1)
found in Subsection 4.1. Throughout the subsection we assume that µ1 <
µ2 are two consecutive roots of GH, they are both simple, and GH > 0
in (µ1, µ2). For τ ∈ (0, δ), µ ∈ (µ1 − δ, µ + δ), with δ > 0 sufficiently
small, we use the representation (4.5) for solutions of (4.1) contained in
Γ. Also, as in Theorem 4.1, µ(τ) and µ(τ) are uniquely defined roots of
s∗(µ, τ)[1− s∗(µ, τ)] = 0 with µ(0) = µ1, µ(0) = µ2.
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Let (µ, u, v) = (µ, u(µ, τ), v(µ, τ)) be a coexistence state contained in Γ.
As discussed in Section 2, the stability of (u, v) is determined by the sign of
λ1, the principal eigenvalue of the problem

µ∆ϕ + ϕ[a− 2u− (1 + τg)v] + ψ(−u)(1 + τg) = −λ1ϕ in Ω, (4.27a)

µ∆ψ + ϕ(−v)(1 + τh) + ψ[a− 2v − (1 + τh)u] = −λ1ψ in Ω, (4.27b)

∂ϕ

∂n
=

∂ψ

∂n
= 0 on ∂Ω.

(4.27c)

For small τ , we can choose the principal eigenfunction (ϕ, ψ) as

ϕ(µ, τ) = θ(µ) + τϕ1(µ, τ), (4.28a)

ψ(µ, τ) = −θ(µ) + τψ1(µ, τ), (4.28b)

where ϕ1 and ψ1 are smooth functions of (µ, τ).
In the following lemma we establish a formula for λ1, which will be needed

later to determine its sign.

Lemma 4.3. Under the above notation, for each small τ > 0 the principal
eigenvalue λ1 = λ1(µ, τ) of (4.27) satisfies

λ1

τ

∫

Ω

(ϕv − ψu) = 2

∫

Ω

guvψ − 2

∫

Ω

huvϕ−
∫

Ω

hψu2 +

∫

Ω

gϕv2. (4.29)

Proof. Multiplying (4.26a) by v and integrating by parts, by (4.1) we obtain

−λ1

∫

Ω

ϕv = τ

∫

Ω

huvϕ−
∫

Ω

uvϕ− τ

∫

Ω

gϕv2−
∫

Ω

uvψ− τ

∫

Ω

guvψ. (4.30)

Similarly by (4.1) and (4.26b) we have

−λ1

∫

Ω

ψu = τ

∫

Ω

guvψ−
∫

Ω

uvψ− τ

∫

Ω

hψu2−
∫

Ω

uvϕ− τ

∫

Ω

huvϕ. (4.31)

Subtracting (4.30) from (4.31) we obtain (4.29). !

To determine the sign of λ1 for small τ , we should consider three different
situations: µ close to µ1, µ close to µ2, and µ bounded away from µ1, µ2. In
the last case, the sign of λ1 can be determined by the following result.

20



Lemma 4.4. For any η > 0,

lim
τ→0+

λ1(µ, τ)

τ
= − G(µ)H(µ)

G(µ) + H(µ)

1∫
Ω θ2(x, µ) dx

(4.32)

uniformly for µ ∈ [µ1 + η, µ2 − η].

Proof. By (4.5) and (4.28) we have (u(µ, τ), v(µ, τ)) → (s0(µ)θ(µ), [1 −
s0(µ)]θ(µ)), and (ϕ, ψ) → (θ(µ),−θ(µ)) as τ → 0. Hence, if τ → 0, we get

∫

Ω

(ϕv − ψu) dx→
∫

Ω

θ2 dx (4.33)

and

2

∫

Ω

guvψ dx− 2

∫

Ω

huvϕ dx−
∫

Ω

hψu2 dx +

∫

Ω

gϕv2 dx

→ −2s0(µ)[1− s0(µ)]G(µ)− 2s0(µ)[1− s0(µ)]H(µ)

+ s2
0(µ)H(µ) + [1− s0(µ)]2G(µ)

= − G(µ)H(µ)

G(µ) + H(µ)
, (4.34)

where the last equality follows from s0 = G/(G+H). Relation (4.32) follows
from (4.29), (4.33), and (4.34). !

For definiteness, we consider the case G(µ1) = 0 (the case H(µ1) = 0 can
be treated similarly). We thus have s∗(µ, τ) = 0, where µ = µ(τ), and also

(u(µ, τ), v(µ, τ)) = (0, θ(µ)).

The sign of λ1(µ, τ) when µ is close to µ1 is determined from the following
lemma.

Lemma 4.5. Suppose that G(µ1) = 0. Then the following holds.

lim
(µ,τ)→(µ1,0)

λ1(µ, τ)

τ(µ− µ)
= − G′(µ1)∫

Ω θ2(x, µ1) dx
. (4.35)

Proof. We observe that at the bifurcation value µ we have λ1(µ, τ) = 0, and
the corresponding ϕ(µ, τ) satisfies

µ∆ϕ + ϕ
[
a− (1 + τg)θ(µ)

]
= 0 in Ω,

∂ϕ

∂n
= 0 on ∂Ω. (4.36)
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Multiplying (4.36) by v(µ, τ) (= θ(µ)) and integrating by parts we obtain

∫

Ω

gϕ(µ, τ)v2(µ, τ) dx = 0. (4.37)

Denote I(µ, τ) the right-hand side of (4.29). Then u(µ, τ) = 0 and (4.37)
imply I(µ, τ) = 0. Therefore, by the mean value theorem, we have

I(µ, τ) = (µ− µ)Iµ(µ∗, τ) (4.38)

for some µ∗ = µ∗(µ, τ) between µ and µ(τ).
The derivative of I with respect to µ can be written as

Iµ(µ, τ) =2

∫

Ω

g(uµvψ + uvµψ + uvψµ)− 2

∫

Ω

h(uµvϕ + uvµϕ + uvϕµ)

−
∫

Ω

h(ψµu
2 + 2ψuuµ) +

∫

Ω

g(ϕµv
2 + 2ϕvvµ). (4.39)

By (4.5) and (4.28), if τ → 0 and µ → µ1, we have u → 0, v → θ(µ1),
ϕ → θ(µ1), ψ → −θ(µ1), uµ → s′0(µ1)θ(µ1), vµ → −s′0(µ1)θ(µ1) + θµ(µ1),
ϕµ → θµ(µ1), and ψµ is uniformly bounded. Hence, by the assumption
G(µ1) = 0, we have

Iµ(µ1, 0) = −2s′0(µ1)H(µ1) + G′(µ1). (4.40)

Since G(µ1) = 0, we get s′0(µ1) = G′(µ1)/H(µ1). Therefore,

Iµ(µ1, 0) = −G′(µ1). (4.41)

Relation (4.35) follows from (4.41) and Lemma 4.3. !

The case when µ is close to µ2 can be treated similarly. We formulate the
result, omitting the proof. Assume that G(µ2) = 0 (the case H(µ2) = 0 is
analogous). We then have s∗(µ, τ) = 0, where µ = µ(τ). The sign of λ1(µ, τ)
is determined from the following.

Lemma 4.6. Suppose that G(µ2) = 0. Then the following holds.

lim
(µ,τ)→(µ2,0)

λ1(µ, τ)

τ(µ− µ)
= − G′(µ2)∫

Ω θ2(x, µ2) dx
. (4.42)
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Now we can establish the main result of this subsection, which is a con-
sequence of Lemmas 4.4, 4.5 and 4.6.

Theorem 4.7. Suppose that µ1, µ2 are two consecutive zeros of GH, they
are both simple, and GH > 0 in (µ1, µ2). Then there exists τ0 > 0 such that
for every τ ∈ (0, τ0) and every µ ∈ (µ(τ), µ(τ)), we have

(i) λ1(µ, τ) > 0 provided that G < 0 and H < 0 in (µ1, µ2);

(ii) λ1(µ, τ) < 0 provided that G > 0 and H > 0 in (µ1, µ2).

Proof. We only prove part (i), (ii) is analogous. We argue by contradic-
tion. Suppose that there are sequences τi → 0 and µi ∈ (µ(τi), µ(τi)) with
λ1(µi, τi) ≤ 0 for all i = 1, 2 . . . . Passing to a subsequence if necessary,
we may assume that µi → µ∗. Since µ(τi) → µ1 and µ(τi) → µ2, we have
µ∗ ∈ [µ1, µ2]. There are two cases for us to consider:

Case I. µ∗ ∈ (µ1, µ2). By Lemma 4.4 we have

lim
i→∞

λ1(µi, τi)

τi
= − G(µ∗)H(µ∗)

G(µ∗) + H(µ∗)
> 0.

Hence, λ1(µi, τi) is positive for large i, in contradiction to our assumption
λ1(µi, τi) ≤ 0.
Case II. µ∗ = µ1 or µ∗ = µ2. For the case µ∗ = µ1, without loss of generality,
we may assume that G(µ1) = 0. Since G < 0 in (µ1, µ2) and µ1 is a simple
root of G, G′(µ1) < 0. By Lemma 4.5, we have

lim
i→∞

λ1(µi, τi)

τi(µi − µ(τi))
= − G′(µ1)∫

Ω θ2(x, µ1) dx
> 0. (4.43)

Since µi > µ(τi), by (4.43) we have λ1(µi, τi) > 0 for large i. Again, we have
reached a contradiction. The case µ∗ = µ2 can be treated similarly. !

4.3 Proof of Theorem 1.1

Theorem 1.1 is a global statement; we first claim that if τ > 0 is sufficiently
small, then all nontrivial solutions (µ, u, v) of (4.1), with µ close to [µ1, µ2]
and u ≥ 0, v ≥ 0 are located near Σ.
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Assume this is not true. Then there exist µ̃ ∈ [µ1, µ2] and sequences τk →
0, µk → µ̃, and (uk, vk) ∈ X such that (uk, vk) is a nontrivial nonnegative
solution of (4.1) with µ = µk, τ = τk and

distR×X((µk, uk, vk), Σ) ≥ ε0 (k = 1, 2, . . . ) (4.44)

for some ε0 > 0. Using the maximum principle, one easily shows that (uk, vk)
are uniformly bounded in the L∞-norm. From standard elliptic estimates
(specifically, the Lp-estimates and then the Schauder estimates), we conclude,
passing to subsequences if necessary, that (uk, vk) converges in X to a solution
(ũ, ṽ) of (4.1) with µ = µ̃, τ = 0. For τ = 0, the solution (µ̃, ũ, ṽ) is either
contained in Σ or it is trivial: (ũ, ṽ) = (0, 0). The former contradicts (4.44),
we next rule out the latter. Assume it holds and consider the eigenvalue
problem

µ∆ϕ + [a− u− (1 + τg)v]ϕ = −λϕ in Ω,
∂ϕ

∂n

∣∣
∂Ω

= 0. (4.45)

If µ = µ̃, u = v = 0, and τ = 0, then by hypothesis (A1) the principal
eigenvalue is negative. The same is true, by the continuity of the principal
eigenvalue, if µ = µk ≈ µ̃, u = uk ≈ 0, v = vk ≈ 0 and τ = τk ≈ 0, in
particular, this is true for large k. On the other hand, if uk (≡ 0, then (4.1)
implies that ϕ = uk ≥ 0 is the principal eigenfunction with eigenvalue λ = 0
for this problem, a contraction. Hence uk ≡ 0, for all large k. Similarly one
shows that vk ≡ 0 for all large k, contradicting the assumption that (uk, vk)
is nontrivial. The claim is now proved.

Once we know that all nontrivial nonnegative solutions (u, v) of (4.1) are
located near Σ, we can use the results from Subsections 4.1, 4.2 to complete
the proof of Theorem 1.1. Specifically, statement (i) follows directly from
Theorem 4.1, and statement (ii) follows from Theorem 4.1, Remark 4.2, and
Theorem 4.7.

4.4 Loops and branches of coexistence states

This subsection is devoted to the proof of Theorem 1.2. The following two
lemmas characterize the existence of loops and branches (as defined before
theorem 1.2) through functions H and G. They are immediate consequences
of Theorems 4.1 and 4.7.
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Lemma 4.8. Suppose that µ∗, µ∗ are two consecutive roots of H, they are
both simple, with H < 0 in (µ∗, µ∗), and G < 0 in [µ∗, µ∗]. Then for small
τ > 0, there exist µ and µ such that µ(τ) → µ∗ and µ(τ) → µ∗ as τ → 0,
and (4.1) has a stable loop from µ = µ to µ = µ.

Lemma 4.9. Suppose that µ∗, µ∗ are two consecutive roots of GH, they are
both simple, and H(µ∗) < G(µ∗) = 0 = H(µ∗) < G(µ∗) (or with G and
H switched). Then for small τ > 0, there exist µ(τ) and µ(τ) such that
µ(τ) → µ∗ and µ(τ) → µ∗ as τ → 0, and (4.1) has a stable branch from µ
to µ.

In view of previous lemmas, we need to show that it is possible to choose
g and h such that GH have appropriate simple zeroes and sign for Theorem
1.2 to hold. We start by proving the following technical result.

Lemma 4.10. Suppose that a ∈ Cγ(Ω) and a3
+ (∈ Cγ+1(Ω) for some γ > 0.

Then for each positive integer k, the set

Uk ≡
{
(µ1, ..., µk) ∈ Rk

+ : a3
+, θ3(µ1), ..., θ

3(µk), 1 are linearly independent
}

(4.46)
is open and dense in Rk

+.

Proof. Recall that the Gram’s determinant of functions ψ1, . . . , ψm ∈ L2(Ω)
is the determinant of the matrix

(∫
Ω ψiψj dx

)m

i,j=1
, and that it is nonzero if

and only if the functions are linearly independent.
For positive values of µi (1 ≤ i ≤ k) and nonnegative µ, let D(µ1, ..., µk, µ)

denote the Gram’s determinant of 1, θ3(µ1), ..., θ3(µk), θ3(µ), where we apply
the convention θ(0) = a+. Note that D(µ1, ..., µk, µ) is analytic in its ar-
guments. We have (µ1, ..., µk) ∈ Uk if and only if D(µ1, ..., µk, 0) (= 0. The
continuity of D(µ1, ..., µk, 0) as a function of µ1, ..., µk immediately implies
that Uk is open in Rk

+.
The proof of the density is by induction in k. We first show that U1 = R1

+.
If not, then a3

+, θ3(µ1), 1 are linearly dependent for some µ1 > 0. By a ∈ Cγ

and elliptic regularity, θ(µ1) ∈ Cγ+1. Since a3
+ (∈ Cγ+1, we see that the only

possibility is that θ3(µ1) and 1 are linearly dependent. However, this is a
contradiction since θ(µ1) is not a constant function. Therefore, the density
conclusion holds for k = 1.

Now suppose that Uk is dense in Rk
+. We show that Uk+1 is dense in

Rk+1
+ . Fix an arbitrary (µ1, ..., µk, µk+1) ∈ Rk+1

+ . By the induction hypoth-
esis, we can choose (µ̃1, ..., µ̃k) ∈ Uk arbitrarily close to (µ1, ..., µk). Since
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(µ̃1, ..., µ̃k) ∈ Uk, we have D(µ̃1, ..., µ̃k, 0) (= 0. Therefore, there exists δ > 0
small such that

D(µ̃1, ..., µ̃k, µ) (= 0 (4.47)

for µ ∈ (0, δ). Since D(µ̃1, ..., µ̃k, ·) is analytic in (0,∞) and not identically
zero, its roots are isolated. Therefore, we can find µ̃k+1 arbitrarily close to
µk+1 such that D(µ̃1, ..., µ̃k+1) (= 0. Hence, θ3(µ̃1), ..., θ3(µ̃k+1), 1 are linearly
independent. Since θ3(µ̃1), ...θ3(µ̃k+1) are in Cγ+1 and a3

+ (∈ Cγ+1, we see
that θ3(µ̃1), ..., θ3(µ̃k+1), 1, a3

+ are linearly independent as well, that is,

(µ̃1, ..., µ̃k, µ̃k+1) ∈ Uk+1.

Since (µ̃1, ..., µ̃k+1) ∈ Uk+1 can be chosen arbitrarily close to (µ1, ..., µk+1),
the density is proved. This finishes the proof of Lemma 4.10. !

Finally, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Fix arbitrary positive integer b, l. By Lemma
4.10, we can find (µ1, ..., µ4b) ∈ U4b. Since a3

+, θ3(µ1), ..., θ3(µ4b), 1 are linearly
independent, we can choose a function g1 ∈ C0(Ω) (e.g. choose g1 as a linear
combination of a3

+, θ3(µ1), ..., θ3(µ4b), 1) such that
∫

Ω

g1(x)θ3(x, µ0) dx < 0 <

∫

Ω

g1(x)θ3(x, µ4b+1) dx,
∫

Ω

g1(x)θ3(x, µi) dx ·
∫

Ω

g1(x)θ3(x, µi+1) dx < 0 (i = 0, 1, ..., 4b)
(4.48)

with the understanding that

µ0 = 0, µ4b+1 0 1, θ(x, µ0) = a+(x)

and θ(x, µ4b+1) is sufficiently close to
∫

a/|Ω|. For such a g1, the correspond-
ing function G (with g = g1 in (1.7a)) is negative near µ = 0, positive near
µ = ∞, and it has at least 4b+1 zeros. The same is true for any g in a suffi-
ciently small C0(Ω)-neighborhood U of g1. Now, similarly as in [24, Proof of
Proposition 1.3], applying the parametric transversality [1, 16] to the map

(µ, g) '→ Ψ(µ, g) :=

∫

Ω

g(x)θ3(x, µ) dx

we can choose a function g in this neighborhood such that the corresponding
function G has only simple roots (and at least 4b + 1 of them). Specifically,
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since Ψ(µ, ·) is linear and surjective, the transversality theorem implies that
for any g in an open and dense subset of U , the function G = Ψ(·, g) has
zero as a regular value. Obviously, we can then choose a smooth g with this
property.

Fix such a g and let µ1 < ... < µk, for some k ≥ 4b + 1, be the roots, all
of them simple, of the corresponding function G. Without loss of generality,
we may assume that G < 0 in (µ1, µ2); otherwise, we replace g by −g.

Now for the given l, we use similar arguments as above to find a smooth
function h such that H has zeroes µi,m satisfying µ1,1, ..., µ1,s ∈ (µ1, µ2) for
some s ≥ 2l + 1, and µj,1 ∈ (µj, µj+1) for 2 ≤ j ≤ k − 1. The function
H can have other zeroes, but h can be chosen such that H and G have no
common roots and H has only simple roots. Then, we have at least [ s−1

2 ] ≥ l
of intervals among {(µ1,j, µ1,j+1)}s−1

j=1 in which H < 0. By Lemma 4.8, (4.1)
has at least l stable loops in (µ1, µ2).

We also note that in (µ1, µ2), there are at least [ s−1
2 ] ≥ l intervals among

{(µ1,j, µ1,j+1}s−1
j=1 in which H > 0, so that the above conclusion remains valid

if H is replaced by −H. This observation will be needed later since we may
have to replace H by −H.

Next we seek the existence of b stable branches. Recall that k ≥ 4b + 1.
There are at least 2b intervals among {(µj, µj+1)}k−1

j=1 in which G < 0. In the
following we consider two possibilities for these intervals:
(a) In at least b intervals, out of the ones where G < 0, the number of zeroes
of H is odd. For any such interval, there exist µ∗ < µ∗ (one of them being
an end point of the interval) such that H(µ∗) = 0 = G(µ∗) and H, G < 0 in
(µ∗, µ∗), or G(µ∗) = H(µ∗) = 0 and H, G < 0 in (µ∗, µ∗). By Lemma 4.9,
there exists a stable branch between µ∗ and µ∗. Hence, there will be at least
b stable branches in total in this case.
(b) There are at least [k−1

2 ]− (b− 1) ≥ b + 1 intervals, out of the ones where
G < 0, in which the number of zeroes of H is even. Divide such intervals into
two subgroups: (i) both H(µj) and H(µj+1) are negative; (ii) both H(µj)
and H(µj+1) are positive. If the number of intervals in group (i) is at least
[ b+1

2 ], then we have at least 2[ b+1
2 ] ≥ b stable branches. If not, the number of

intervals in group (ii) is at least [ b+1
2 ]. For this case, replace H by −H and

repeat the argument as in (i). By the observation made earlier, by replacing
H by −H, the number of stable loops in (µ1, µ2) is at least l. This completes
the proof of Theorem 1.2. !
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