Emphasis Programs

2014-2015: Cancer and Its Environment

Cancer is one of the world's biggest killers. Cancer is initiated from cells with specific genetic mutations that cause them to lose control of proliferation. This loss of proliferative control, whilst necessary, is not sufficient to cause cancer; subsequent mutations and selection need to occur. Cancer is an evolutionary disease, where rounds of mutation and selection will drive the emergence of a tumor. The selection pressures that a growing tumor encounters are manifold but can largely be classified as microenvironmental. The tumor microenvironment consists of the extracellular matrix..

Fall 2015: Mathematical Molecular Biosciences

This one-semester program will bring together researchers from mathematics, chemistry, physics, biology, computer science, and engineering to explore new ways to bridge these diverse disciplines, and to facilitate the use of mathematics to solve open problems at the forefront of the molecular biosciences...

Spring 2016: Dynamics of Biologically Inspired Networks

Networks and deterministic and stochastic dynamical systems on networks are used as models in many areas of biology. This underscores the importance of developing tools to understand the interplay between network structures and dynamical processes, as well as how network dynamics can be controlled. The dynamics associated with such models are often different from what one might traditionally expect from a large system of equations, and these differences present the opportunity to develop exciting new theories and methods that should facilitate the analysis of specific models.

Fall 2016: Analysis of Complex Data in Biological Systems

Within the next few years all fields of mathematical biology will be impacted by large amounts of complex data. Because of this, there are many new mathematical questions to be addressed. Should old simple models be thrown out and should we begin again with newer complex models? Or are there mathematical ways to use the new data to determine parameters in the old models more accurately and thus allow their parameters to be updated automatically in real time as the data stream in. These questions are fundamental to medical practice in acute crises, to the dynamical behavior of cells, to policy decisions about vaccination and epidemic spread, to the effects of climate change on ecological niches, and to our understanding of brain function.