Spring 2016: Dynamics of Biologically Inspired Networks

Organizing Committee


Peter Ashwin
College of Engineering, Mathematics and Physical Sciences, University of Exeter
Nina Fefferman
Department of Ecology, Evolution and Natural Resources, Rutgers University
Martin Feinberg
Chemical Engineering & Mathematics, The Ohio State University
Leon Glass
Department of Physiology, McGill University, Macdonald Campus
Adilson Motter
Physics, Northwestern University
Mason Porter
Mathematical Institute, University of Oxford
Ruth Williams
Mathematics, University of California, San Diego

Networks and deterministic and stochastic dynamical systems on networks are used as models in many areas of biology. This underscores the importance of developing tools to understand the interplay between network structures and dynamical processes, as well as how network dynamics can be controlled. The dynamics associated with such models are often different from what one might traditionally expect from a large system of equations, and these differences present the opportunity to develop exciting new theories and methods that should facilitate the analysis of specific models. Moreover, a nascent area of research is the dynamics of networks in which the networks themselves change in time, which occurs, for example, in plasticity in neuroscience and in up regulation and down regulation of enzymes in biochemical systems.

There are many areas in biology (including neuroscience, gene networks, and epidemiology) in which network analysis is now standard. Techniques from network science have yielded many biological insights in these fields and their study has yielded many theorems. Moreover, these areas continue to be exciting areas that contain both concrete and general mathematical problems. Workshop 1 explores the mathematics behind the applications in which restrictions on general coupled systems are important. Examples of such restrictions include symmetry, Boolean dynamics, and mass-action kinetics; and each of these special properties permits the proof of theorems about dynamics on these special networks.

Workshop 2 focuses on the interplay between stochastic and deterministic behavior in biological networks. An important related problem is to understand how stochasticity affects parameter estimation. Analyzing the relationship between stochastic changes, network structure, and network dynamics poses mathematical questions that are new, difficult, and fascinating.

In recent years, an increasing number of biological systems have been modeled using networks whose structure changes in time or which use multiple kinds of couplings between the same nodes or couplings that are not just pairwise. General theories such as groupoids and hypergraphs have been developed to handle the structure in some of these more general coupled systems, and specific application models have been studied by simulation. Workshop 3 will bring together theorists, modelers, and experimentalists to address the modeling of biological systems using new network structures and the analysis of such structures.

Biological systems use control to achieve desired dynamics and prevent undesirable behaviors. Consequently, the study of network control is important both to reveal naturally evolved control mechanisms that underlie the functioning of biological systems and to develop human-designed control interventions to recover lost function, mitigate failures, or repurpose biological networks. Workshop 4 will address the challenging subjects of control and observability of network dynamics.

Events