MBI Publications

MBI Publications for Wing-Cheong Lo (2)

  • W. Lo, R. Arsenescu and A. Friedman
    Mathematical model of the roles of T cells in inflammatory bowel disease.
    Bulletin of mathematical biologyVol. 75 No. 9 (2013) pp. 1417-33

    Abstract

    Gut mucosal homeostasis depends on complex interactions among the microbiota, the intestinal epithelium, and the gut associated immune system. A breakdown in some of these interactions may precipitate inflammation. Inflammatory bowel diseases, Crohn's disease, and ulcerative colitis are chronic inflammatory disorders of the gastrointestinal tract. The initial stages of disease are marked by an abnormally high level of pro-inflammatory helper T cells, Th1. In later stages, Th2 helper cells may dominate while the Th1 response may dampen. The interaction among the T cells includes the regulatory T cells (Treg). The present paper develops a mathematical model by a system of differential equations with terms nonlocal in the space spanned by the concentrations of cytokines that represents the interaction among T cells through a cytokine signaling network. The model demonstrates how the abnormal levels of T cells observed in inflammatory bowel diseases can arise from abnormal regulation of Th1 and Th2 cells by Treg cells.
  • W. Lo, M. Lee, M. Narayan, C. Chou and H. Park
    Polarization of diploid daughter cells directed by spatial cues and GTP hydrolysis of Cdc42 budding yeast.
    PloS oneVol. 8 No. 2 (2013) pp. e56665

    Abstract

    Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model.

View Publications By