MBI Publications

MBI Publications for Jay Newby (2)

  • J. Newby and M. Schwemmer
    Effects of moderate noise on a limit cycle oscillator: counterrotation and bistability.
    Physical review lettersVol. 112 No. 11 (2014) pp. 114101


    The effects of noise on the dynamics of nonlinear systems is known to lead to many counterintuitive behaviors. Using simple planar limit cycle oscillators, we show that the addition of moderate noise leads to qualitatively different dynamics. In particular, the system can appear bistable, rotate in the opposite direction of the deterministic limit cycle, or cease oscillating altogether. Utilizing standard techniques from stochastic calculus and recently developed stochastic phase reduction methods, we elucidate the mechanisms underlying the different dynamics and verify our analysis with the use of numerical simulations. Last, we show that similar bistable behavior is found when moderate noise is applied to the FitzHugh-Nagumo model, which is more commonly used in biological applications.
  • P. Bressloff and J. Newby
    Path integrals and large deviations in stochastic hybrid systems.
    Physical review. E, Statistical, nonlinear, and soft matter physicsVol. 89 No. 4 (2014) pp. 042701


    We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.

View Publications By