MBI Publications

MBI Publications for Joshua Chang (2)

  • J. Chang, K. Brennan, D. He, H. Huang, P. Wilson and J. Wylie
    A mathematical model of the metabolic and perfusion effects on cortical spreading depression.
    PloS oneVol. 8 No. 8 (2013) pp. e70469


    Cortical spreading depression (CSD) is a slow-moving ionic and metabolic disturbance that propagates in cortical brain tissue. In addition to massive cellular depolarizations, CSD also involves significant changes in perfusion and metabolism-aspects of CSD that had not been modeled and are important to traumatic brain injury, subarachnoid hemorrhage, stroke, and migraine. In this study, we develop a mathematical model for CSD where we focus on modeling the features essential to understanding the implications of neurovascular coupling during CSD. In our model, the sodium-potassium-ATPase, mainly responsible for ionic homeostasis and active during CSD, operates at a rate that is dependent on the supply of oxygen. The supply of oxygen is determined by modeling blood flow through a lumped vascular tree with an effective local vessel radius that is controlled by the extracellular potassium concentration. We show that during CSD, the metabolic demands of the cortex exceed the physiological limits placed on oxygen delivery, regardless of vascular constriction or dilation. However, vasoconstriction and vasodilation play important roles in the propagation of CSD and its recovery. Our model replicates the qualitative and quantitative behavior of CSD--vasoconstriction, oxygen depletion, extracellular potassium elevation, prolonged depolarization--found in experimental studies. We predict faster, longer duration CSD in vivo than in vitro due to the contribution of the vasculature. Our results also help explain some of the variability of CSD between species and even within the same animal. These results have clinical and translational implications, as they allow for more precise in vitro, in vivo, and in silico exploration of a phenomenon broadly relevant to neurological disease.
  • J. Chang and T. Chou
    Iterative graph cuts for image segmentation with a nonlinear statistical shape prior.
    Journal of mathematical imaging and visionVol. 49 No. 1 (2014) pp. 87-97


    Shape-based regularization has proven to be a useful method for delineating objects within noisy images where one has prior knowledge of the shape of the targeted object. When a collection of possible shapes is available, the specification of a shape prior using kernel density estimation is a natural technique. Unfortunately, energy functionals arising from kernel density estimation are of a form that makes them impossible to directly minimize using efficient optimization algorithms such as graph cuts. Our main contribution is to show how one may recast the energy functional into a form that is minimizable iteratively and efficiently using graph cuts.

View Publications By