MBI Publications

MBI Publications for Magdalena Stolarska (3)

  • M. Stolarska, Y. Kim and H. Othmer
    Multiscale models of cell and tissue dynamics
    Phil. Trans. Roy. Soc.Vol. 367 (2009) pp. 3525-3553

    Abstract

  • M. Stolarska, Y. Kim and H. Othmer
    Multiscale models of cell and tissue dynamics
    Phil. Trans. Toy. Soc.Vol. 367 (2009) pp. 3525-3553

    Abstract

    Cell and tissue movement are essential processes at various stages in the life cycle of most organisms. The early development of multi-cellular organisms involves individual and collective cell movement; leukocytes must migrate towards sites of infection as part of the immune response; and in cancer, directed movement is involved in invasion and metastasis. The forces needed to drive movement arise from actin polymerization, molecular motors and other processes, but understanding the cell- or tissue-level organization of these processes that is needed to produce the forces necessary for directed movement at the appropriate point in the cell or tissue is a major challenge. In this paper, we present three models that deal with the mechanics of cells and tissues: a model of an arbitrarily deformable single cell, a discrete model of the onset of tumour growth in which each cell is treated individually, and a hybrid continuum-discrete model of the later stages of tumour growth. While the models are different in scope, their underlying mechanical and mathematical principles are similar and can be applied to a variety of biological systems.
  • Y. Kim, M. Stolarska and H. Othmer
    The Role of the Microenvironment in Tumor Growth and Invasion
    Progress in Biophysics and Molecular BiologyVol. 106 (2011) pp. 353-379 (Submitted)

    Abstract

    Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to under- stand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be √Ę‚?¨ň?community-controlled√Ę‚?¨‚?Ę.

View Publications By