MBI Publications

MBI Publications for Tumor Dynamics (6)

  • Y. Kim and H. Othmer
    A hybrid model for tumor spheroid grown in vitro I: Theoretical development and early results
    Math. Models Methods in Appl ScisVol. 17 (2007) pp. 1773-1798

    Abstract

    Tumor spheroids grown in vitro have been widely used as models of in vivo tumor growth because they display many of the characteristics of in vivo growth, including the effects of nutrient limitations and perhaps the effect of stress on growth. In either case there are numerous biochemical and biophysical processes involved whose interactions can only be understood via a detailed mathematical model. Previous models have focused on either a continuum description or a cell-based description, but both have limitations. In this paper we propose a new mathematical model of tumor spheroid growth that incorporates both continuum and cell-level descriptions, and thereby retains the advantages of each while circumventing some of their disadvantages. In this model the cell-based description is used in the region where the majority of growth and cell division occurs, at the periphery of a tumor, while a continuum description is used for the quiescent and necrotic zones of the tumor and for the extracellular matrix. Reaction-diffusion equations describe the transport and consumption of two important nutrients, oxygen and glucose, throughout the entire domain. The cell-based component of this hybrid model allows us to examine the effects of cell€“cell adhesion and variable growth rates at the cellular level rather than at the continuum level. We show that the model can predict a number of cellular behaviors that have been observed experimentally.
  • M. Stolarska, Y. Kim and H. Othmer
    Multiscale models of cell and tissue dynamics
    Phil. Trans. Toy. Soc.Vol. 367 (2009) pp. 3525-3553

    Abstract

    Cell and tissue movement are essential processes at various stages in the life cycle of most organisms. The early development of multi-cellular organisms involves individual and collective cell movement; leukocytes must migrate towards sites of infection as part of the immune response; and in cancer, directed movement is involved in invasion and metastasis. The forces needed to drive movement arise from actin polymerization, molecular motors and other processes, but understanding the cell- or tissue-level organization of these processes that is needed to produce the forces necessary for directed movement at the appropriate point in the cell or tissue is a major challenge. In this paper, we present three models that deal with the mechanics of cells and tissues: a model of an arbitrarily deformable single cell, a discrete model of the onset of tumour growth in which each cell is treated individually, and a hybrid continuum-discrete model of the later stages of tumour growth. While the models are different in scope, their underlying mechanical and mathematical principles are similar and can be applied to a variety of biological systems.
  • Y. Kim and A. Friedman
    Interaction of tumor with its microenvironment: A Mathematical Model
    Bulletin of Mathematical BiologyVol. 72 No. 5 (2010) pp. 1029-1068

    Abstract

    This paper is concerned with early development of transformed epithelial cells (TECs) in the presence of fibroblasts in the tumor microenvironment. These two types of cells interact by means of cytokines such as transforming growth factor (TGF-beta) and epidermal growth factor (EGF) secreted, respectively, by the TECs and the fibroblasts. As this interaction proceeds, TGF-beta induces fibroblasts to differentiate into myofibroblasts which secrete EGF at a larger rate than fibroblasts. We monitor the entire process in silico, in a setup which mimics experiments in a Tumor Chamber Invasion Assay, where a semi-permeable membrane coated by extracellular matrix (ECM) is placed between two chambers, one containing TECs and another containing fibroblasts. We develop a mathematical model, based on a system of PDEs, that includes the interaction between TECs, fibroblasts, myofibroblasts, TGF-beta, and EGF, and we show how model parameters affect tumor progression. The model is used to generate several hypotheses on how to slow tumor growth and invasion. In an Appendix, it is proved that the mathematical model has a unique global in-time solution.
  • Y. Kim, J. Wallace, F. Li, M. Ostrowski and A. Friedman
    Transformed Epithelias cells (TEC) and fibroblasts/myofibroblasts interaction in Breast Tumor: A Mathematical Model and Experiments
    Journal of Mathematical BiologyVol. 61 No. 3 (2010) pp. 401-421

    Abstract

    It is well known that tumor and its microenvironment, or stroma, interact with each other and that this interaction plays a critical role in tumor initiation, growth, and metastasis. This interaction consists of complex relations between tumor cells, stromal cells such as fibroblasts, epithelial cells and immunocytes, the vascular system, the extracellular matrix, and cytokines secreted by the cells. Understanding these relationships may lead to new therapeutic approaches to cancer. In the present paper, we consider tumor-stroma crosstalk in a simple in vitro situation which involves interaction between tumor epithelial cells from breast cancer and a microenvironment consisting of just fibroblasts. The two populations of cells are separated by a semi-permeable membrane that allows only cytokines to cross over. We develop a mathematical model that includes two critical growth factors: TGF-beta, produced by the tumor cells, and EGF, secreted by the fibroblasts. The TGF-beta modifies the microenvironment by transforming fibroblasts into myofibroblasts. Myofibroblasts secrete higher concentrations of EGF than fibroblasts, thereby, increasing the proliferation of tumor cells. Thus already in this simple setup one sees a mutual interaction between tumor cells and their microenvironment. We conducted experiments which show good agreement with the model's simulations, hence confirming the model's ability to predict aspects of tumor cell behavior in response to signaling from fibroblasts.
  • A. Friedman and Y. Kim
    Tumor cells proliferation and migration under the influence of their microenvironment
    Mathematical Biosciences and EngineeringVol. 8 No. 2 (2011) pp. 373-385

    Abstract

    It is well known that tumor microenvironment affects tumor growth and metastasis: Tumor cells may proliferate at different rates and migrate in different patterns depending on the microenvironment in which they are embedded. There is a huge literature that deals with mathematical models of tumor growth and proliferation, in both the avascular and vascular phases. In particular, a review of the literature of avascular tumor growth (up to 2006) can be found in Lolas [8] (G. Lolas, Lecture Notes in Mathematics, Springer Berlin / Heidelberg, 1872, 77 (2006)). In this article we report on some of our recent work. We consider two aspects, proliferation and of migration, and de- scribe mathematical models based on in vitro experiments. Simulations of the models are in agreement with experimental results. The models can be used to generate hypotheses regarding the development of drugs which will confine tumor growth.
  • Y. Kim, M. Stolarska and H. Othmer
    The Role of the Microenvironment in Tumor Growth and Invasion
    Progress in Biophysics and Molecular BiologyVol. 106 (2011) pp. 353-379 (Submitted)

    Abstract

    Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to under- stand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be â??community-controlledâ??.

View Publications By