Bayesian Causal Inference: A Tutorial

Fan Li

Department of Statistical Science
Duke University

June 2, 2019
Causation

- Relevant questions about causation
 - the philosophical meaningfulness of the notion of causation
 - deducing the causes of a given effect
 - understanding details of a causal mechanism

- Here we focus on measuring the effects of causes, where
 statistics arguably can contribute most

- Several statistical frameworks
 - graphical models (S Wright, J Pearl)
 - structural equations (S Wright, T Haavelmo, J Heckman)
 - potential outcomes (J Neyman, DB Rubin)
Potential Outcome Framework

- The Potential Outcome Framework: the most widely used framework across many disciplines

- Brief history
 - Randomized experiments: Fisher (1918, 1925), Neyman (1923)
 - Observational studies and propensity scores: Rosenbaum and Rubin (1983)
 - Heterogeneous treatment effects and machine learning: Athey and Imbens (2015), many others
No causation without manipulation: a “cause” must be (hypothetically) manipulatable, e.g., intervention, treatment

Goal: estimate the effects of “cause”, not causes of effect

Three integral components (Rubin, 1978):
 - potential outcomes: corresponding to the various levels of a treatment
 - assignment mechanisms
 - a (Bayesian) model for the science (i.e. the potential outcomes and covariates)

Causal effects: a comparison of the potential outcomes under treatment and control for the same set of units
Basic Setup

- Data: a random sample of N units from a target population
- A treatment with two levels: $w = 0, 1$
- For each unit i, we observe the (binary) treatment status W_i, a vector of covariates X_i, and an outcome Y_i^{obs}
- For each unit i, two potential outcomes $Y_i(0), Y_i(1)$ – implicitly invoke the Stable Unit Treatment Value Assumption (SUTVA)
- Bold font for matrices or vectors consisting of the corresponding variables for the N units: for example,
 - $X = (X_1', \ldots, X_N')'$, $W = (W_1, \ldots, W_N)'$
Causal Estimands (Parameter of Interest)

- Population average treatment effect (PATE):
 \[\tau^{PATE} = \mathbb{E}[Y_i(1) - Y_i(0)]. \]

- Sample average treatment effect (SATE):
 \[\tau^{SATE} = \frac{1}{N} \sum_{i=1}^{N} [Y_i(1) - Y_i(0)]. \]

- Average treatment effect for the treated (ATT):
 \[\tau^{ATT} = \mathbb{E}[Y_i(1) - Y_i(0)|W_i = 1]. \]

- Conditional average treatment effect (CATE):
 \[\tau(x) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x]. \]
The Fundamental Problem of Causal Inference
Holland, 1986

- For each unit, we can observe at most one of the two potential outcomes, the other is missing (counterfactual)

- Potential outcomes and assignments jointly determine the values of the observed and missing outcomes:

\[Y_{i}^{obs} \equiv Y_{i}(W_{i}) = W_{i} \cdot Y_{i}(1) + (1 - W_{i}) \cdot Y_{i}(0) \]

- Causal inference under the potential outcome framework is essentially a missing data problem

- To identify causal effects from observed data, one must make additional (structural or/and stochastic) assumptions
Perfect Doctor

<table>
<thead>
<tr>
<th>Potential Outcomes</th>
<th>Observed Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y(0)$</td>
<td>W</td>
</tr>
<tr>
<td>$Y(1)$</td>
<td>$Y(0)$</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

| Observed averages | 5.4 | 11 |

| True averages | 7 | 5 |

| Observed averages | 10 | 9 |
A key identifying assumption is on assignment mechanism: the probabilistic rule that decides which unit gets assigned to which treatment

\[\Pr(W_i = 1|X_i, Y_i(0), Y_i(1)) \]

In randomized experiments, assignment mechanism is usually known and controlled by investigators.

In observational studies, assignment mechanism is usually unknown and uncontrolled.
Assumption 1: Positivity (or overlap):

\[0 < \Pr(W_i = 1|X_i, Y_i(0), Y_i(1)) < 1 \] for all \(i \).

- Positivity requires, in large samples, for all possible values of the covariates there are both treated and control units.
- Testable from observed data
Ignorability (or unconfoundedness)

Assumption 2: Ignorability (or unconfoundedness)

\[
\Pr(W_i = 1|X_i, Y_i(0), Y_i(1)) = \Pr(W_i = 1|X_i)
\]

Often also written as \(\{ Y_i(0), Y_i(1) \} \perp W_i|X_i \)

- Assumes that within subpopulations defined by values of observed covariates, the treatment assignment is random
- Rules out unmeasured confounders
- \(e_i(x) \equiv \Pr(W_i = 1|X_i = x) \) is called the propensity score (Rosenbaum and Rubin, 1983)
- Unconfoundedness and positivity jointly define “strong ignorability"
Identify causal effects under unconfoundedness

Under unconfoundedness, for $w = 0, 1$:

$$\Pr(Y(w)|X) = \Pr(Y^{obs}|X, W = w)$$

Thus ATE can be estimated from observed data:

$$\tau^{PATE} = \mathbb{E}_X[\mathbb{E}(Y^{obs}|X = x, W = 1) - \mathbb{E}(Y^{obs}|X = x, W = 0)]$$

Randomized experiments satisfy unconfoundedness

Untestable and likely violated to a degree, but invoked in most observational studies

Sensitivity to unconfoundedness is routinely checked (Cornfield, 1959; Rosenbaum and Rubin, 1983b)
Classification of assignment mechanisms

- Randomized experiments:
 - strong ignorability automatically holds
 - good balance is (in large samples) guaranteed

- Ignorable (or unconfounded) observational studies
 - strong ignorability is assumed, conditional on covariates
 - balance need to be achieved

- Quasi-experiments: looking for “natural" experiments (under assumptions)
Classification of ignorable assignment mechanisms

We will focus on ignorable assignment mechanisms and extensions

- Standard ignorable assignment mechanism: one-time treatment, conditional on covariates
- Sequentially ignorable: time-varying treatment
- Latent ignorable: post-treatment variables, principal stratification
- Locally ignorable: regression discontinuity
- Weakly ignorable: multi-valued and continuous treatment
- Interference: when SUTVA is violated
- More...
Methods and Modes of Inference

- Two overarching methods
 - Imputation: impute the missing potential outcomes (model-based or matching-based)
 - Weighting: weight (often function of the propensity scores) the observed data to represent a target population

- Three modes of inference
 - Frequentist: imputation, weighting, motivated by consistency, asymptotic normality, (semiparametric) efficiency, etc.
 - Bayesian: modeling and imputing missing potential outcomes based on their posterior distributions
 - Fisherian randomization: combine randomization tests with Bayesian methods, unique to randomized experiments
Four quantities are associated with each sampled unit: $Y_i(0)$, $Y_i(1)$, W_i, X_i

Three observed: W_i, $Y_i^{obs} = Y_i(W_i)$, X_i; one missing $Y_i^{mis} = Y_i(1 - W_i)$

Given W_i, there is a one-to-one map between (Y_i^{obs}, Y_i^{mis}) and $(Y_i(0), Y_i(1))$:

$$Y_i^{obs} = Y_i(1)W_i + Y_i(0)(1 - W_i)$$

Thus causal estimands $\tau = \tau(Y(0), Y(1))$ can be represented as functions $\tau = \tau(Y^{obs}, Y^{mis}, W)$
Bayesian inference considers the observed values of the four quantities to be realizations of random variables and the unobserved values to be unobserved random variables

$\Pr(Y(0), Y(1), W, X)$: joint probability density function of these random variables for all units

Assuming unit-exchangeability, there exists a unknown parameter vector θ with a prior dist $p(\theta)$ such that (de Finetti, 1963):

$$
\Pr(Y(0), Y(1), W, X) = \int \prod_i \Pr(Y_i(0), Y_i(1), W_i, X_i|\theta)p(\theta)d\theta
$$
General Structure (II)

▶ Bayesian inference of the estimand \(\tau = \tau (Y^{obs}, Y^{mis}, W) \):
obtain the joint posterior (predictive) distributions of \(Y^{mis}, \theta \),
and thus \(Y^{mis} \), and thus \(\tau \)

▶ Factorization of the joint distribution:

\[
\Pr(Y_i(0), Y_i(1), W_i, X_i | \theta) = \Pr(W_i | Y_i(0), Y_i(1), X_i, \theta_W) \Pr(Y_i(0), Y_i(1) | X_i, \theta_Y) \Pr(X_i | \theta_X)
\]

▶ Usually we do not want to model \(\Pr(X_i) \), rather we
condition on \(X \)

▶ We make two assumptions
 ▶ a priori distinct and independent parameters for \(\theta_W \) and \(\theta_Y \)
 ▶ Ignorable assignment mechanism

\[
\Pr(W_i | Y_i(0), Y_i(1), X_i) = \Pr(W_i | X_i)
\]
Under the two assumptions, the joint posterior distribution of \((Y_{\text{mis}}, \theta_Y)\) is

\[
\begin{align*}
\Pr(Y_{\text{mis}}, \theta_Y | Y^{\text{obs}}, W, X) &
\propto p(\theta_Y)p(\theta_W)p(\theta_X) \Pr(W_i | Y_i(0), Y_i(1), X_i, \theta_W) \Pr(Y_i(0), Y_i(1) | X_i, \theta_Y) \Pr(X_i | \theta_X) \\
&\propto p(\theta_Y) \prod_{i=1}^{N} \Pr(Y_i(0), Y_i(1) | X_i, \theta_Y)
\end{align*}
\]

Above the terms \(\Pr(W_i | X_i, \theta_W)\) and \(\Pr(X_i | \theta_X)\) drop out of the likelihood – not informative about \(\theta_Y\) or \(Y_{\text{mis}}\).

Need to specify “the model for science”:

\[
\Pr(Y_i(0), Y_i(1) | X_i)
\]

Two different specific strategies to simulate \(Y_{\text{mis}}\).
Strategy 1: Data Augmentation (Gibbs Sampling)

- Iteratively simulate Y_{mis} and θ from
 $\Pr(Y_{mis} \mid Y^{obs}, W, X, \theta)$ and $\Pr(\theta \mid Y_{mis}, Y^{obs}, W, X)$

- Posterior predictive distribution of Y_{mis}:
 \[
 \Pr(Y_{mis} \mid Y^{obs}, W, X, \theta) \propto \prod_{i: W_i = 1} \Pr(Y_i(0) \mid Y_i(1), X_i, \theta_Y) \prod_{i: W_i = 0} \Pr(Y_i(1) \mid Y_i(0), X_i, \theta_Y)
 \]

- Impute missing potential outcomes
 - For treated units, impute the missing $Y_i(0)$ from $\Pr(Y_i(0) \mid Y_i(1), X_i, \theta_{Y|X})$
 - For control units: impute the missing $Y_i(1)$ from $\Pr(Y_i(1) \mid Y_i(0), X_i, \theta_{Y|X})$
Strategy 1: Data Augmentation (Gibbs Sampling)

- Imputation crucially depends on the model for science: $\text{Pr}(Y_i(1), Y_i(0)|X_i)$

- But $Y_i(1), Y_i(0)$ are never jointly observed, no information at all about the association between $Y_i(1)$ an $Y_i(0)$ → posterior = prior, and posterior of estimand τ will be sensitive to its prior
Strategy 1: Problems

- Proposed by Rubin (1978), widely used
- Problem: Observed data contain information on the marginal distributions of the potential outcomes, but no or little information on the association
- No clear separation of identified and non-identified parameters
- What does identifiability mean?
 - Frequentist: the parameter can be expressed as a function of the observed data distribution
 - Dogmatic Bayesian: with proper prior, all parameters are identifiable (Lindley, 1972)
 - Gustafson (2015): sensitivity of the posterior on the prior - weak identifiability
Strategy 2: Transparent Parameterization

- Richardson, Evans, and Robins (2010): transparent parametrization
- Separate identifiable and non-identifiable parameters
- Based on the definition of conditional probability
 \[(O^{obs} = (X, Y^{obs}, W) \text{ is the observed data}) \]
 \[
 Pr(Y^{mis}, \theta | O^{obs}) = Pr(\theta | O^{obs}) \Pr(Y^{mis} | \theta, O^{obs})
 \]
- First simulate \(\theta \) given \(O^{obs} \) from \(Pr(\theta | O^{obs}) \), then simulate \(Y^{mis} \) given \(\theta \) and \(O^{obs} \) from \(Pr(Y^{mis} | \theta, O^{obs}) \)
- Partition the parameter \((\theta^m) \) that governs the marginal distributions of \(Y_i(1) \) and \(Y_i(0) \) from the parameter \((\theta^a) \) that governs the association between them
- Assume \(\theta^m \) and \(\theta^a \) are a priori independent
Strategy 2: Transparent Parameterization

- Posterior of θ:

$$
\Pr(\theta \mid O^{\text{obs}}) \propto p(\theta_{Y\mid X}^a)p(\theta_{Y\mid X}^m) \times \\
\prod_{W_i=1} \Pr(Y_i(1) \mid X_i, \theta_{Y\mid X}^m) \prod_{W_i=0} \Pr(Y_i(0) \mid X_i, \theta_{Y\mid X}^m)
$$

- The posterior $\theta_{Y\mid X}^m$ is updated by the likelihood, but not $\theta_{Y\mid X}^a$ (same as prior)

- Given a posterior draw of $\theta_{Y\mid X}^m$, we can impute Y^{mis} as in Strategy 1

- Repeat the analysis varying $\theta_{Y\mid X}^a$ (from 0 to 1) as sensitivity analysis (Ding and Dasgupta, 2016)
Example of Strategy 2: Regression Adjustment

- Completely randomized experiment with continuous outcome

- Assume a bivariate normal model for the joint potential outcomes

\[
\begin{pmatrix}
Y_i(1) \\
Y_i(0)
\end{pmatrix}
| (X_i, \theta_{Y|X}) \sim N
\left(
\begin{pmatrix}
\beta'_1 X_i \\
\beta'_0 X_i
\end{pmatrix},
\begin{pmatrix}
\sigma^2_1 & \rho\sigma_1\sigma_0 \\
\rho\sigma_1\sigma_0 & \sigma^2_0
\end{pmatrix}
\right)
\]

- Strategy 2: \(\theta^m_{Y|X} = (\beta_1, \beta_0, \sigma^2_1, \sigma^2_0) \), \(\theta^a_{Y|X} = \rho \)

- \(\{(X_i, Y_{i}^{obs}) : W_i = 1\} \) contribute to the likelihood of \(\{\beta_1, \sigma^2_1\} \)

- \(\{(X_i, Y_{i}^{obs}) : W_i = 0\} \) contribute to the likelihood of \(\{\beta_0, \sigma^2_0\} \)

- The observed likelihood does not depend on \(\rho \): posterior = prior
Example: Regression Adjustment

- Impose standard conjugate normal-inverse χ^2 priors to β and σ
- For a fixed ρ and given each draw of $(\beta_1, \beta_0, \sigma_1^2, \sigma_0^2)$, we impute the missing potential outcomes:
 - For treated units ($W_i = 1$), draw
 $$Y_i(0) | - \sim N \left(\beta_0' X_i + \rho \frac{\sigma_0}{\sigma_1} (Y_{i}^{\text{obs}} - \beta_1' X_i), \sigma_0^2 (1 - \rho^2) \right),$$
 - For control units ($W_i = 0$), we draw
 $$Y_i(1) | - \sim N \left(\beta_1' X_i + \rho \frac{\sigma_1}{\sigma_0} (Y_{i}^{\text{obs}} - \beta_0' X_i), \sigma_1^2 (1 - \rho^2) \right).$$
- Consequently we obtain the posterior distribution of any estimands given ρ
- Repeat the analysis varying ρ from 0 to 1
Posterior distribution of causal estimands: Sample

After obtaining the posterior draws of \((Y^{\text{mis}}, \theta_Y)\), how to calculate the posterior dist of the causal estimands?

Different procedure – depends on the estimand: sample vs. population parameters

Sample parameters: all potential outcomes are viewed as fixed values

Example: Sample ATE (SATE)

\[
\tau^S \equiv \frac{1}{N} \sum_{i=1}^{N} \{Y_i(1) - Y_i(0)\}
\]

To calculate SATE: plug in the imputed missing potential outcomes \(Y^{\text{mis}}\) and the observed outcomes \(Y^{\text{obs}}\) to the SATE definition above

Uncertainty only comes from imputing \(Y^{\text{mis}}\)
Posterior distribution of causal estimands: Population

- Population parameters: all potential outcomes are viewed as random variables drawn from a superpopulation
- Example: Population ATE (PATE)

\[\tau^P \equiv \mathbb{E}\{ Y_i(1) - Y_i(0) \} = \int \tau^P(x; \theta^m \mid Y \mid X) F_X(x; \theta_X), \]

where

\[\tau^P(x) \equiv \mathbb{E}\{ Y(1) \mid X = x; \theta^m \mid Y \mid X \} - \mathbb{E}\{ Y(0) \mid X = x; \theta^m \mid Y \mid X \} \]

- To calculate PATE, two ways
 - Either directly use the posterior distribution of the parameters, or
 - Simulate posterior predictive draws of the observed values \(\tilde{Y}^{obs} \), and use together with the imputed missing p.o.s \(\tilde{Y}^{mis} \) to calculate

- Uncertainty comes from imputing both \(Y^{mis} \) and \(Y^{obs} \)
Population vs. sample estimands

- PATE has more uncertainty than SATE, larger credible interval

- What we often calculate is something in between: a hybrid without requiring modeling X:

 $$\tau^X \equiv \int \tau^P(x; \theta^m_{Y|X}) \hat{F}_X(x) = N^{-1} \sum_{i=1}^{N} \tau^P(X_i; \theta^m_{Y|X})$$

 where \hat{F}_X is the empirical distribution of $Pr(X)$

- Width of credible interval can differ significantly
Example: population estimand

Consider $\delta^X = N^{-1} \sum_{i=1}^{N} \delta(X_i)$, where

$$\delta(x) = \Pr(Y_i(1) > Y_i(0) \mid X_i = x, \theta_{Y|X}^m, \theta_{Y|X}^a)$$

Assume a normal linear model: for $i = 1, \ldots, N$,

$$\begin{pmatrix} Y_i(1) \\ Y_i(0) \end{pmatrix} \mid (X_i, \theta_{Y|X}) \sim \mathcal{N} \left(\begin{pmatrix} \beta_1'X_i \\ \beta_0'X_i \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_0 \\ \rho \sigma_1 \sigma_0 & \sigma_0^2 \end{pmatrix} \right)$$

Simulate δ^X using the posterior draws of the parameters based on

$$\delta^X = \frac{1}{N} \sum_{i=1}^{N} \Phi \left\{ \frac{(\beta_1 - \beta_0)'X_i}{\left(\sigma_1^2 + \sigma_0^2 - 2\rho \sigma_1 \sigma_0\right)^{1/2}} \right\}$$

Sensitivity parameter $\rho \in [0, 1]$
Bayesian inference of causal effects: Recap

- Key assumptions
 - Exchangeability (?)
 - Ignorable assignment mechanism (unconfoundedness)
 - Prior independence of parameters for assignment mechanism \(\Pr(W|X) \) and outcome generating mechanism \(\Pr(Y(1), Y(0)|X) \)
 - Of course, the outcome model: \(\Pr(Y(1), Y(0)|X) \)

- Key challenge: fundamental problem of causal inference
 - Weakly identifiable parameters, sensitive to priors and the outcome model
Overlap and Balance

- Overlap and balance of covariates play a central role in causal inference.

- Good overlap and balance reduces the sensitivity to the outcome model — particularly crucial for Bayesian causal inference.

- In randomized experiments, valid causal inference even if the outcome model is misspecified (because balance is guaranteed in large samples).

- Not the case in observational studies, one has to work hard to ensure overlap and balance.
Propensity score

Rosenbaum and Rubin, 1983, Biometrika

The propensity score: \(e_i(x) \equiv \Pr(W_i = 1 | X_i = x) \) the probability of receiving a treatment given covariates

Two key properties:

1. Balancing property: \(W \perp X | e(X) \), equivalently, \(\Pr(W_i = 1 | X_i, e(X_i)) = \Pr(W_i = 1 | e(X_i)) \)

2. Unconfoundedness: If the treatment is unconfounded given \(X \), then the treatment is unconfounded given \(e(X) \)

\[\{Y_i(1), Y_i(0)\} \perp W_i | X_i \implies \{Y_i(1), Y_i(0)\} \perp W_i | e(X_i) \]
Propensity score

- Propensity score is a scalar summary (summary statistic) of the covariates w.r.t. the assignment mechanism.
- Propensity score is central to ensure balance and overlap.
- In Frequentist paradigm, propensity scores are used via:
 - Matching
 - Weighting
 - Subclassification
 - Regression (propensity score as a covariate)
 - Combination of the above
Propensity score methods are often embraced as a “model-free” alternative to (model-based) regression adjustment.

In Bayesian paradigm, assuming unconfoundedness and a \textit{a priori} independence of parameters, the propensity score drops out of the likelihood function: \textit{ignorable}!

Does propensity score still matter in Bayesian causal inference?

Yes, it matters, a lot!
Role of Propensity Score in Bayesian Inference

- Conceptual arguments
 - Rubin (1985): robust Bayesian inference – good covariate balance is necessary for Bayesian inference of causal effects being well-calibrated
 - Wasserman and Robins (2015): as a dimension-reduction tool
 - Choice of priors: Debate between Sims and Robins/Wasserman
 - A deep philosophical question also appeared in survey sampling (Sarndal 1978; Hansen et al. 1983; Little 2004)
Role of Propensity Score in Bayesian Inference

- Practical arguments: adding the estimated PS to the outcome model improves inference
 - Approach 1: Add the estimated propensity score as an additional covariate to the outcome model $\Pr(Y(1), Y(0)|X)$
 - Approach 2: Calibrated Bayes (Rod Little et al.): separate the outcome model into (1) a nonparametric function (e.g. penalized spline) of PS, and (2) a parametric function of PS and covariates
- Combine the best of two worlds: a flexible (Bayesian) nonparametric model of the PS and covariates, e.g. Gaussian Process (GP) or BART
- Practical issues: computation, particularly in big data
The feedback issue in Bayesian PS adjustment

Zigler et al (2013)

In a full Bayesian world, a natural way is to model simultaneously

- \(\Pr(Y(1), Y(0)|X, PS) \)
- \(PS = P(W = 1|X) \)

Doing so would allow for PS uncertainty propagation in final estimates

However, PS estimates would be informed by the outcome model \(\Rightarrow \) break unconfoundedness

- PS parameters such that PS estimates are most predictive in the outcome model
The feedback issue in Bayesian PS adjustment

Zigler et al (2013)

- Propensity score estimation should only reflect the treatment assignment mechanism
- PS should not be informed by the outcome
- Address that by cutting the feedback in model fitting
 - Updates of PS parameters do not accommodate PS predictive ability of the outcome
 - Outcome model likelihood is not included in PS model updates
- By cutting the feedback, PS is valid and model estimates account or PS estimation uncertainty
Different outcome models: A toy example

A single covariate ‘age’; younger people are more likely to receive treatment and higher outcome scores.

Linear model (LM): fits are good within groups, but overconfident in region lack of overlap

BART: shorter error bars, prone to bias in region lack of overlap

Add-GP trades potential bias with increased uncertainty bands, more robust
Extension: Noncompliance in Randomized Experiments

- Noncompliance: units take treatment different from the assigned one
- Random treatment assigned: Z_i
- Actually treatment received: W_i
- Noncompliance: $Z_i \neq W_i$ for some units
- Noncompliance can arise because, e.g. side effects, perception of the effect of the treatment
- Noncompliance is self-selected: breaks the initial randomization
Instrumental Variable Approach to Noncompliance

- Angrist, Imbens, and Rubin (1996, JASA) proposed an instrumental variable (IV) approach to non-compliance

- Potential outcomes: $Y(z)$ for $z = 0, 1$

- The treatment received W is post-treatment (assignment), therefore also has two potential outcomes: $W(z)$, $z = 0, 1$

- Observed data: Z_i, $W_i = W(Z_i)$, $Y_i = Y(Z_i)$

- The central idea is to divide units into latent subgroups based on their compliance behavior

- Defining compliance type: $S_i = (W_i(0), W_i(1))$
Compliance Types

- Four possible compliance types

<table>
<thead>
<tr>
<th>$W_i(0)$</th>
<th>$W_i(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- The true compliance type S is not observed on all units.

- The observed cells of Z and W are mixture of different compliance types.

<table>
<thead>
<tr>
<th>Z</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>[C, NT]</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>[AT, D]</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>[NT, D]</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>[C, AT]</td>
</tr>
</tbody>
</table>
Principal Stratification
Frangakis and Rubin (2002, Biometrics)

- A key observation: the compliance type S_i does not change according to the assignment Z_i. It can be viewed as a baseline characteristics
- Causal estimands: treatment effect for each compliance type:

$$
\tau_s = \mathbb{E}[Y_i(1) - Y_i(0)|S_i = s], \text{ for } s = c, n, a, d.
$$

- The global intention-to-treatment (ITT) effect

$$
\tau = \mathbb{E}[Y_i(1) - Y_i(0)] \text{ is a weighted average of the compliance-specific effects:}
$$

$$
\tau = \sum_{s=c,n,a,d} \pi_s \tau_s
$$

where π_s is the proportion of units of type s
More generally, noncompliance is a special case of "post-treatment" intermediate variable.

Compliance types are principal strata, τ_s are principal causal effects.

Main challenge to inference: individual principal stratum status is not observed; we only observed mixture of distributions.

Additional assumptions are needed.
Ignorable Assignment with Intermediate Variables

- Ignorable (unconfounded) assignment with intermediate variables

\[\Pr(Z_i \mid W_i(0), W_i(1), Y_i(0), Y_i(1), X_i) = \Pr(Z_i \mid X_i) \]

- Under ignorability,
 - the principal stratum membership \(S_i \) is guaranteed to have the same distribution in both treatment arms (within cells defined by pre-treatment variables):

\[S_i \perp Z_i \mid X_i \]

- Latent unconfoundedness: Potential outcomes are independent of the treatment assignment given the principal strata

\[(Y_i(0), Y_i(1)) \perp Z_i \mid S_i, X_i \]
Bayesian Inference of Principal Stratification

- With posttreatment variables, six quantities are associated with each unit:

 \[X_i \quad Z_i \quad S_i(0) \quad W_i(1) \quad W_i(0) \quad Y_i(1) \]

- Observed variables:
 \[\{ Y_i^{\text{obs}} = Y_i(Z_i), \ W_i^{\text{obs}} = W_i(Z_i), Z_i, X_i \} ; \]
 missing variables: \[\{ Y_i^{\text{mis}} = Y_i(1 - Z_i), \ W_i^{\text{mis}} = W_i(1 - Z_i) \} \]

- **Bayesian inference considers the observed values of these quantities to be realizations of random variables and the unobserved values to be unobserved random variables**

- Key to inference: impute the missing potential outcomes and thus principal strata
Joint probability (density) function of all random variables

\[Pr(X, Z, W(0), W(1), Y(0), Y(1)) = \]
\[Pr(X) Pr(Z | X) Pr(W(0), W(1), Y(0), Y(1) | X, Z) = \]
\[Pr(X) Pr(Z | X) Pr(W(0), W(1), Y(0), Y(1) | X) \]

where the second equality follows from the assumption of ignorable assignment of \(Z \)

✓ Ignorability implies that we can ignore \(Pr(Z | X) \)

► We condition on the observed distribution of covariates: \(Pr(X) \) does not need to be modeled
General Structure of Bayesian Inference (II)

Assuming unit exchangeability and by appealing to de Finetti’s theorem:

\[
\begin{align*}
Pr\left(\mathbf{W}(0), \mathbf{W}(1), \mathbf{Y}(0), \mathbf{Y}(1) \mid \mathbf{X}\right) &= \int \prod_{i=1}^{N} Pr\left(W_i(0), W_i(1), Y_i(0), Y_i(1) \mid X_i; \theta\right) p(\theta) d\theta = \\
&= \int \prod_{i=1}^{N} Pr\left(W_i(0), W_i(1) \mid X_i; \theta\right) Pr\left(Y_i(0), Y_i(1) \mid X_i, W_i(0), W_i(1); \theta\right) p(\theta) d\theta = \\
&= \int \prod_{i=1}^{N} Pr\left(S_i \mid X_i; \theta\right) Pr\left(Y_i(0), Y_i(1) \mid X_i, S_i; \theta\right) p(\theta) d\theta
\end{align*}
\]

Posterior predictive distribution of the missing potential outcomes

\[
Pr\left(\mathbf{W}^{mis}, \mathbf{Y}^{mis} \mid \mathbf{X}, \mathbf{Z}, \mathbf{W}^{obs}, \mathbf{Y}^{obs}\right) = \frac{Pr\left(\mathbf{W}(0), \mathbf{W}(1), \mathbf{Y}(0), \mathbf{Y}(1) \mid \mathbf{X}\right)}{\int \int Pr\left(\mathbf{W}(0), \mathbf{W}(1), \mathbf{Y}(0), \mathbf{Y}(1) \mid \mathbf{X}\right) d\mathbf{W}^{mis} d\mathbf{Y}^{mis}} \\
\propto \int \prod_{i=1}^{N} Pr\left(W_i(0), W_i(1) \mid X_i; \theta\right) Pr\left(Y_i(0), Y_i(1) \mid X_i, W_i(0), W_i(1); \theta\right) p(\theta) d\theta
\]
General Structure of Bayesian Inference (III)

- The predictive distribution of the missing data, $Pr\left(S^{mis}, Y^{mis} \mid X, Z, W^{obs}, Y^{obs}\right)$, combines features of the assignment mechanism with those of the distribution of the potential outcomes.

- Directly specifying $Pr\left(W^{mis}, Y^{mis} \mid X, Z, W^{obs}, Y^{obs}\right)$ is generally difficult.

- Instead we start with three inputs:
 - The model for principal stratum membership given the covariates and parameters:
 $$Pr\left(W_i(0), W_i(1) \mid X_i; \theta\right) = Pr\left(S_i \mid X_i; \theta\right)$$
 - The distributions of the potential outcomes conditional on principal stratum, covariates and parameters:
 $$Pr\left(Y_i(0), Y_i(1) \mid X_i, S_i; \theta\right)$$
 - The prior distribution $p(\theta)$.
To obtain the posterior distribution of the estimands (principal causal effects), we need to obtain the joint posterior predictive distributions $Pr(W^{mis}, \theta | X, Z, W^{obs}, Y^{obs})$.

Use Gibbs sampling/MCMC: iteratively draw between $Pr(W^{mis} | X, Z, W^{obs}, Y^{obs}; \theta)$ and $Pr(\theta | X, Z, W^{obs}, W^{mis}, Y^{obs})$.

Then derive the marginal posterior distribution of θ, $p_{obs}(\theta | X, Z, S^{obs}, Y^{obs})$, and thus the posterior of the causal estimands of interest.
Complete intermediate data likelihood

- The key: complete intermediate data likelihood:

\[
\prod_i \Pr(Y_i(0) \mid S_i, X_i; \theta)^{1-Z_i} \Pr(Y_i(1) \mid S_i, X_i; \theta)^{Z_i} \Pr(S_i \mid X_i; \theta).
\]

- Without any constraints, the complete intermediate data likelihood is a product of four components, each corresponding to an observed cell of \(Z, W\) and being a mixture of two principal strata:

\[
\text{Lik} \propto \prod_{i: Z_i=0, W_i=0} (\pi_i, c f_i, c_0 + \pi_i, n f_i, n_0) \times \prod_{i: Z_i=0, W_i=1} (\pi_i, a f_i, a_0 + \pi_i, d f_i, d_0) \\
\times \prod_{i: Z_i=1, W_i=0} (\pi_i, n f_i, n_1 + \pi_i, d f_i, d_1) \times \prod_{i: Z_i=1, W_i=1} (\pi_i, a f_i, a_1 + \pi_i, c f_i, c_1),
\]

where \(f_{i,sz} = \Pr(Y_i(z) \mid S_i = s, X_i; \theta)\) and \(\pi_{i,s} = \Pr(S_i = s \mid X_i; \theta)\)

- Essentially this is a mixture model
Weak identifiability and additional assumptions

- Need additional assumptions to tighten the posterior distributions
 - Strong Monotonicity: no defiers
 \[W_i(1) \geq W_i(0), \quad 0 < \Pr(W_i = 0 | Z_i = 1) < 1, \text{ for all } i, \]
 - Stochastic Exclusion Restriction for Never-Takers and Always-takers: For \(s = n, a \)
 \[\Pr(Y_i(0) | X_i, S_i = s; \theta) = \Pr(Y_i(1) | X_i, S_i = s; \theta) \]
- Under these assumptions, the posterior distribution of the parameters/estimands are usually concentrated
Bayesian causal inference: Summary

▶ “Any complication that creates problems for one form of inference creates problems for all forms of inference, just in different ways” – Don Rubin (2014, interview)

▶ Bayesian + causal inference: anything special?

▶ Fundamental problem of causal inference: weakly identifiable parameters, sensitive to priors and the outcome model

▶ (paradoxical) role of propensity scores

▶ In high-dimensional settings: shrinkage priors can unwillingly introduce confounding (series of work by Hahn et al.)
Why (and When) Bayesian?

- Usual arguments: take into account of uncertainty, not rely on large sample asymptotics

- Specific to causal inference:
 - allow inference of individual causal effects
 - combine with decision theory
 - Particularly suitable for complex settings: post-treatment variables (principal stratification), sequential treatments, spatial and temporal data

- Advanced Bayesian models and methods bring new insights and tools: Bayesian nonparametrics, Bayesian model selection, Bayesian model averaging

- Much room to improve
Further Readings

