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Causation

I Relevant questions about causation
I the philosophical meaningfulness of the notion of causation
I deducing the causes of a given effect
I understanding details of a causal mechanism

I Here we focus on measuring the effects of causes, where
statistics arguably can contribute most

I Several statistical frameworks
I graphical models (S Wright, J Pearl)
I structural equations (S Wright, T Haavelmo, J Heckman)
I potential outcomes (J Neyman, DB Rubin)



Potential Outcome Framework

I The Potential Outcome Framework: the most widely used
framework across many disciplines

I Brief history
I Randomized experiments: Fisher (1918, 1925), Neyman

(1923)
I Formulation (assignment mechanism and Bayesian model):

Rubin (1974, 1977, 1978)
I Observational studies and propensity scores: Rosenbaum

and Rubin (1983)
I Heterogonous treatment effects and machine learning:

Athey and Imbens (2015), many others



Potential Outcome Framework: Key Components

I No causation without manipulation: a “cause” must be
(hypothetically) manipulatable, e.g., intervention, treatment

I Goal: estimate the effects of “cause”, not causes of effect

I Three integral components (Rubin, 1978):
I potential outcomes: corresponding to the various levels of a

treatment
I assignment mechanisms
I a (Bayesian) model for the science (i.e. the potential

outcomes and covariates)

I Causal effects: a comparison of the potential outcomes
under treatment and control for the same set of units



Basic Setup

I Data: a random sample of N units from a target population

I A treatment with two levels: w = 0,1

I For each unit i , we observe the (binary) treatment status
Wi , a vector of covariates Xi , and an outcome Y obs

i

I For each unit i , two potential outcomes Yi(0),Yi(1) –
implicitly invoke the Stable Unit Treatment Value
Assumption (SUTVA)

I Bold font for matrices or vectors consisting of the
corresponding variables for the N units: for example,
I X = (X ′

1, . . . ,X
′
N)′, W = (W1, . . . ,WN)′



Causal Estimands (Parameter of Interest)
I Population average treatment effect (PATE):

τPATE = E[Yi(1)− Yi(0)].

I Sample average treatment effect (SATE):

τSATE =
1
N

N∑
i=1

[Yi(1)− Yi(0)].

I Average treatment effect for the treated (ATT):

τATT = E[Yi(1)− Yi(0)|Wi = 1].

I Conditional average treatment effect (CATE):

τ(x) = E[Yi(1)− Yi(0)|Xi = x ].



The Fundamental Problem of Causal Inference
Holland, 1986

I For each unit, we can observe at most one of the two
potential outcomes, the other is missing (counterfactual)

I Potential outcomes and assignments jointly determine the
values of the observed and missing outcomes:

Y obs
i ≡ Yi(Wi) = Wi · Yi(1) + (1−Wi) · Yi(0)

I Causal inference under the potential outcome framework is
essentially a missing data problem

I To identify causal effects from observed data, one must
make additional (structural or/and stochastic) assumptions



Perfect Doctor

Potential Outcomes Observed Data
Y (0) Y (1) W Y (0) Y (1)

13 14 1 ? 14
6 0 0 6 ?
4 1 0 4 ?
5 2 0 5 ?
6 3 0 6 ?
6 1 0 6 ?
8 10 1 ? 10
8 9 1 ? 9

True Observed
averages 7 5 averages 5.4 11



Assignment Mechanism

I A key identifying assumption is on assignment mechanism:
the probabilistic rule that decides which unit gets assigned
to which treatment

Pr(Wi = 1|Xi ,Yi(0),Yi(1))

I In randomized experiments, assignment mechanism is
usually known and controlled by investigators

I In observational studies, assignment mechanism is usually
unknown and uncontrolled



Positivity (or overlap)

Assumption 1: Positivity (or overlap):
0 < Pr(Wi = 1|Xi ,Yi(0),Yi(1)) < 1 for all i .

I Positivity requires, in large samples, for all possible values
of the covariates there are both treated and control units.

I Testable from observed data



Ignorability (or unconfoundedness)

Assumption 2: Ignorability (or unconfoundedness)

Pr(Wi = 1|Xi ,Yi(0),Yi(1)) = Pr(Wi = 1|Xi)

Often also written as {Yi(0),Yi(1)} ⊥Wi |Xi

I Assumes that within subpopulations defined by values of
observed covariates, the treatment assignment is random

I Rules out unmeasured confounders

I ei(x) ≡ Pr(Wi = 1|Xi = x) is called the propensity score
(Rosenbaum and Rubin, 1983)

I Unconfoundedness and positivity jointly define “strong
ignorability"



Identify causal effects under unconfoundedness

I Under unconfoundedness, for w = 0,1:

Pr(Y (w)|X ) = Pr(Y obs|X ,W = w)

I Thus ATE can be estimated from observed data:

τPATE = Ex [E(Y obs|X = x ,W = 1)−E(Y obs|X = x ,W = 0)]

I Randomized experiments satisfy unconfoundedness

I Untestable and likely violated to a degree, but invoked in
most observational studies

I Sensitivity to unconfoundedness is routinely checked
(Cornfield, 1959; Rosenbaum and Rubin, 1983b)



Classification of assignment mechanisms

I Randomized experiments:
I strong ignorability automatically holds
I good balance is (in large samples) guaranteed

I Ignorable (or unconfounded) observational studies
I strong ignorability is assumed, conditional on covariates
I balance need to be achieved

I Quasi-experiments: looking for “natural" experiments
(under assumptions)



Classification of ignorable assignment mechanisms
We will focus on ignorable assignment mechanisms and
extensions

I Standard ignorable assignment mechanism: one-time
treatment, conditional on covariates

I Sequentially ignorable: time-varying treatment

I Latent ignorable: post-treatment variables, principal
stratification

I Locally ignorable: regression discontinuity

I Weakly ignorable: multi-valued and continuous treatment

I Interference: when SUTVA is violated

I More...



Methods and Modes of Inference

I Two overarching methods
I Imputation: impute the missing potential outcomes

(model-based or matching-based)
I Weighting: weight (often function of the propensity scores)

the observed data to represent a target population

I Three modes of inference
I Frequentist: imputation, weighting, motivated by

consistency, asymptotic normality, (semiparametric)
efficiency, etc.

I Bayesian: modeling and imputing missing potential
outcomes based on their posterior distributions

I Fisherian randomization: combine randomization tests with
Bayesian methods, unique to randomized experiments



Bayesian Inference of Causal Effects

I Four quantities are associated with each sampled unit:
Yi(0),Yi(1),Wi ,Xi

I Three observed: Wi , Y obs
i = Yi(Wi), Xi ; one missing

Y mis
i = Yi(1−Wi)

I Given Wi , there is a one-to-one map between (Y obs
i ,Y mis

i )

and (Yi(0),Yi(1)):

Y obs
i = Yi(1)Wi + Yi(0)(1−Wi)

I Thus causal estimands τ = τ(Y(0),Y(1)) can be
represented as functions τ = τ(Yobs,Ymis,W)



General Structure (I)
Rubin, 1978, Ann. Stat.

I Bayesian inference considers the observed values of the
four quantities to be realizations of random variables and
the unobserved values to be unobserved random variables

I Pr(Y(0),Y(1),W,X): joint probability density function of
these random variables for all units

I Assuming unit-exchangeability, there exists a unknown
parameter vector θ with a prior dist p(θ) such that (de
Finetti, 1963):

Pr(Y(0),Y(1),W,X) =

∫ ∏
i

Pr(Yi(0),Yi(1),Wi ,Xi |θ)p(θ)dθ



General Structure (II)
I Bayesian inference of the estimand τ = τ(Yobs,Ymis,W):

obtain the joint posterior (predictive) distributions of Ymis, θ,
and thus Ymis, and thus τ

I Factorization of the joint distribution:

Pr(Yi (0),Yi (1),Wi ,Xi |θ)

= Pr(Wi | Yi (0),Yi (1),Xi , θW ) Pr(Yi (0),Yi (1) | Xi , θY ) Pr(Xi | θX )

I Usually we do not want to model Pr(Xi), rather we
condition on X

I We make two assumptions
I a priori distinct and independent parameters for θW and θY

I Ignorable assignment mechanism

Pr(Wi | Yi (0),Yi (1),Xi ) = Pr(Wi | Xi )



General Structure (III)

I Under the two assumptions, the joint posterior distribution
of (Ymis, θY ) is

Pr(Ymis, θY | Yobs,W,X)

∝ p(θY )p(θW )p(θX ) Pr(Wi | Yi (0),Yi (1),Xi , θW ) Pr(Yi (0),Yi (1) | Xi , θY ) Pr(Xi | θX )

∝ p(θY )
N∏

i=1

Pr(Yi (0),Yi (1) | Xi , θY )

I Above the terms Pr(Wi | Xi , θW ) and Pr(Xi | θX ) drop out of
the likelihood – not informative about θY or Ymis

I Need to specify “the model for science”:
Pr(Yi(0),Yi(1) | Xi)

I Two different specific strategies to simulate Ymis



Strategy 1: Data Augmentation (Gibbs Sampling)

I Iteratively simulate Ymis and θ from
Pr(Ymis | Yobs,W,X, θ) and Pr(θ | Ymis,Yobs,W,X)

I Posterior predictive distribution of Y mis:

Pr(Ymis | Yobs,W,X, θ)

∝
∏

i:Wi=1

Pr(Yi (0) | Yi (1),Xi , θY )
∏

i:Wi=0

Pr(Yi (1) | Yi (0),Xi , θY )

I Impute missing potential outcomes
I For treated units, impute the missing Yi (0) from

Pr(Yi (0) | Yi (1),Xi , θY |X )

I For control units: impute the missing Yi (1) from
Pr(Yi (1) | Yi (0),Xi , θY |X )



Strategy 1: Data Augmentation (Gibbs Sampling)

I Imputation crucially depends on the model for science:
Pr(Yi(1),Yi(0)|Xi)

I But Yi(1),Yi(0) are never jointed observed, no information
at all about the association between Yi(1) an Yi(0)→
posterior = prior, and posterior of estimand τ will be
sensitive to its prior



Strategy 1: Problems
I Proposed by Rubin (1978), widely used

I Problem: Observed data contain information on the
marginal distributions of the potential outcomes, but no or
little information on the association

I No clear separation of identified and non-identified
parameters

I What does identifiability mean?
I Frequentist: the parameter can be expressed as a function

of the observed data distribution

I Dogmatic Bayesian: with proper prior, all parameters are
identifiable (Lindley, 1972)

I Gustafson (2015): sensitivity of the posterior on the prior -
weak identifiability



Strategy 2: Transparent Parameterization
II Richardson, Evans, and Robins (2010): transparent

parametrization

I Separate identifiable and non-identifiable parameters

I Based on the definition of conditional probability
(Oobs = (X,Yobs,W) is the observed data)

Pr(Ymis, θ | Oobs) = Pr(θ | Oobs) Pr(Ymis | θ,Oobs)

I First simulate θ given Oobs from Pr(θ | Oobs), then simulate
Ymis given θ and Oobs from Pr(Ymis | θ,Oobs)

I Partition the parameter (θm) that governs the marginal
distributions of Yi(1) and Yi(0) from the parameter (θa) that
governs the association between them

I Assume θm and θa are a priori independent



Strategy 2: Transparent Parameterization

I Posterior of θ:

Pr(θ | Oobs) ∝ p(θa
Y |X )p(θm

Y |X )×∏
Wi=1

Pr(Yi(1) | Xi , θ
m
Y |X )

∏
Wi=0

Pr(Yi(0) | Xi , θ
m
Y |X )

I The posterior θm
Y |X is updated by the likelihood, but not θa

Y |X
(same as prior)

I Given a posterior draw of θm
Y |X , we can impute Ymis as in

Strategy 1

I Repeat the analysis varying θa
Y |X (from 0 to 1) as sensitivity

analysis (Ding and Dasgupta, 2016)



Example of Strategy 2: Regression Adjustment

I Completely randomized experiment with continuous
outcome

I Assume a bivariate normal model for the joint potential
outcomes(

Yi(1)

Yi(0)

)
| (Xi , θY |X ) ∼ N

((
β′1Xi

β′0Xi

)
,

(
σ2

1 ρσ1σ0

ρσ1σ0 σ2
0

))

I Strategy 2: θm
Y |X = (β1, β0, σ

2
1, σ

2
0), θa

Y |X = ρ

I {(Xi ,Y obs
i ) : Wi = 1} contribute to the likelihood of {β1, σ

2
1}

I {(Xi ,Y obs
i ) : Wi = 0} contribute to the likelihood of {β0, σ

2
0}

I The observed likelihood does not depend on ρ:
posterior = prior



Example: Regression Adjustment

I Impose standard conjugate normal-inverse χ2 priors to β
and σ

I For a fixed ρ and given each draw of (β1, β0, σ
2
1, σ

2
0), we

impute the missing potential outcomes:
I For treated units (Wi = 1), draw

Yi (0) | − ∼ N
(
β′

0Xi + ρ
σ0

σ1
(Y obs

i − β′
1Xi ), σ

2
0(1− ρ2)

)
,

I For control units (Wi = 0), we draw

Yi (1) | − ∼ N
(
β′

1Xi + ρ
σ1

σ0
(Y obs

i − β′
0Xi ), σ

2
1(1− ρ2)

)
.

I Consequently we obtain the posterior distribution of any
estimands given ρ

I Repeat the analysis varying ρ from 0 to 1



Posterior distribution of causal estimands: Sample
I After obtaining the posterior draws of (Ymis, θY ), how to

calculate the posterior dist of the causal estimands?

I Different procedure – depends on the estimand: sample
vs. population parameters

I Sample parameters: all potential outcomes are viewed as
fixed values

I Example: Sample ATE (SATE)

τS ≡ 1
N

N∑
i=1

{Yi(1)− Yi(0)}

I To calculate SATE: plug in the imputed missing potential
outcomes Ỹmis and the observed outcomes Yobs to the
SATE definition above

I Uncertainty only comes from imputing Ymis



Posterior distribution of causal estimands: Population
I Population parameters: all potential outcomes are viewed

as random variables drawn from a superpopulation

I Example: Population ATE (PATE)

τP ≡ E{Yi(1)− Yi(0)} =

∫
τP(x ; θm

Y |X )FX (x. ; θX ),

where
τP(x) ≡ E{Y (1) | X = x ; θm

Y |X} − E{Y (0) | X = x ; θm
Y |X}

I To calculate PATE, two ways
I Either directly use the posterior distribution of the

parameters, or
I Simulate posterior predictive draws of the observed values

Ỹobs, and use together with the imputed missing p.o.s Ỹmis

to calculate

I Uncertainty comes from imputing both Ymis and Yobs



Population vs. sample estimands

I PATE has more uncertainty than SATE, larger credible
interval

I What we often calculate is something in between: a hybrid
without requiring modeling X :

τX ≡
∫
τP(x ; θm

Y |X )F̂X (x.) = N−1
N∑

i=1

τP(Xi ; θ
m
Y |X )

where F̂X is the empirical distribution of Pr(X )

I Width of credible interval can differ significantly



Example: population estimand

I Consider δX = N−1∑N
i=1 δ(Xi), where

δ(x) = Pr(Yi(1) > Yi(0) | Xi = x , θm
Y |X , θ

a
Y |X )

I Assume a normal linear model: for i = 1, . . . ,N,(
Yi(1)

Yi(0)

)
| (Xi , θY |X ) ∼ N

((
β′1Xi

β′0Xi

)
,

(
σ2

1 ρσ1σ0

ρσ1σ0 σ2
0

))

I Simulate δX using the posterior draws of the parameters
based on

δX =
1
N

N∑
i=1

Φ

{
(β1 − β0)′Xi

(σ2
1 + σ2

0 − 2ρσ1σ0)1/2

}

I Sensitivity parameter ρ ∈ [0,1]



Bayesian inference of causal effects: Recap

I Key assumptions
I Exchangeability (?)
I Ignorable assignment mechanism (unconfoundedness)
I Prior independence of parameters for assignment

mechanism Pr(W |X ) and outcome generating mechanism
Pr(Y (1),Y (0)|X )

I Of course, the outcome model: Pr(Y (1),Y (0)|X )

I Key challenge: fundamental problem of causal inference
I Weakly identifiable parameters, sensitive to priors and the

outcome model



Overlap and Balance

I Overlap and balance of covariates play a central role in
causal inference

I Good overlap and balance reduces the sensitivity to the
outcome model — particularly crucial for Bayesian causal
inference

I In randomized experiments, valid causal inference even if
the outcome model is misspecified (because balance is
guaranteed in large samples)

I Not the case in observational studies, one has to work
hard to ensure overlap and balance



Propensity score
Rosenbaum and Rubin, 1983, Biometrika

I The propensity score: ei(x) ≡ Pr(Wi = 1|Xi = x) the
probability of receiving a treatment given covariates

I Two key properties:
1. Balancing property: W ⊥ X | e(X ), equivalently,

Pr(Wi = 1 | Xi ,e(Xi )) = Pr(Wi = 1 | e(Xi ))

2. Unconfoundedness: If the treatment is unconfounded given
X , then the treatment is unconfounded given e(X )

{Yi (1),Yi (0)} ⊥Wi | Xi =⇒ {Yi (1),Yi (0)} ⊥Wi | e(Xi )



Propensity score

I Propensity score is a scalar summary (summary statistic)
of the covariates w.r.t. the assignment mechanism

I Propensity score is central to ensure balance and overlap

I In Frequentist paradigm, propensity scores are used via
I Matching
I Weighting
I Subclassification
I Regression (propensity score as a covariate)
I Combination of the above



Role of Propensity Score in Bayesian Inference

I Propensity score methods are often embraced as a
“model-free" alternative to (model-based) regression
adjustment

I In Bayesian paradigm, assuming unconfoundedness and a
priori independence of parameters, the propensity score
drops out of the likelihood function: ignorable!

I Does propensity score still matter in Bayesian causal
inference?

I Yes, it matters, a lot!



Role of Propensity Score in Bayesian Inference

I Conceptual arguments
I Rubin (1985): robust Bayesian inference – good covariate

balance is necessary for Bayesian inference of causal
effects being well-calibrated

I Wasserman and Robins (2015): as a dimension-reduction
tool

I Choice of priors: Debate between Sims and
Robins/Wasserman

I A deep philosophical question also appeared in survey
sampling (Sarndal 1978; Hansen et al. 1983; Little 2004)



Role of Propensity Score in Bayesian Inference

I Practical arguments: adding the estimated PS to the
outcome model improves inference

I Approach 1: Add the estimated propensity score as an
additional covariate to the outcome model Pr(Y (1),Y (0)|X )

I Approach 2: Calibrated Bayes (Rod Little et al.): separate
the outcome model into (1) a nonparametric function (e.g.
penalized spline) of PS, and (2) a parametric function of PS
and covariates

I Combine the best of two worlds: a flexible (Bayesian)
nonparametric model of the PS and covariates, e.g.
Gaussian Process (GP) or BART

I Practical issues: computation, particularly in big data



The feedback issue in Bayesian PS adjustment
Zigler et al (2013)

I In a full Bayesian world, a natural way is to model
simultaneously
I Pr(Y (1),Y (0)|X ,PS)

I PS = P(W = 1|X )

I Doing so would allow for PS uncertainty propagation in
final estimates

I However, PS estimates would be informed by the outcome
model⇒ break unconfoundedness
I PS parameters such that PS estimates are most predictive

in the outcome model



The feedback issue in Bayesian PS adjustment
Zigler et al (2013)

I Propensity score estimation should only reflect the
treatment assignment mechanism

I PS should not be informed by the outcome
I Address that by cutting the feedback in model fitting

I Updates of PS parameters do not accommodate PS
predictive ability of the outcome

I Outcome model likelihood is not included in PS model
updates

I By cutting the feedback, PS is valid and model estimates
account or PS estimation uncertainty



Different outcome models: A toy example
Courtesy of Surya Tokdar
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Figure 2: In a toy example a single covariate ‘age’ influences both treatment assignment and a continuous
“outcome”; younger people are more likely to receive treatment and higher outcome scores. For either
group, counterfactuals are predicted by learning outcome-age relation from the other group’s data and
estimated treatment effect (“Effect”), i.e., the difference between predicted outcome and predicted counter-
factual outcome, is shown as a function of age. The true effects curve is deliberately omitted to focus on
the issues of potential prediction bias arising from confounding. Linear model (LM) fits are good within
groups, but appear overconfident while predicting counterfactuals. Add-GP trades potential bias with in-
creased uncertainty bands and produces a more robust effect quantification. BART, which has been used
by Hill (2011) for counterfactual prediction, produces shorter error bars and remains prone to bias.

to the ideas of matching (Rosenbaum & Rubin, 1983; Stuart, 2010), but add-GP offers several con-
ceptual and practical advantages: A) it works effortlessly with binary, multi-category, continuous
outcomes, and potentially vector valued treatments; B) it requires no formal “balance check”12

– which is often hard to implement for high-dimensional Z and continuous treatment variables
(Hill, 2008) – instead lack of local balance is flagged by widening of prediction uncertainty (see
Figure 2); C) it does not require removing observation units that contribute to non-overlapping
propensity score distributions13, rather such units are viewed as data units that will produce very
isolated (t, Zi) pairs and this incur widest prediction error bars.

5.2.2 Validation objectives. We will carry out detailed validation studies to investigate the follow-
ing questions.

1. Does add-GP retain its “trade confounding-bias for variance” principle when analyzing high
dimensional, noisy, heterogeneous data, and, offer reliable inference on treatment effects in
presence of confounding?

2. Can add-GP, with its ability to predict a wide variety of counterfactuals14, expand public pol-
icy research by answering questions that could not be answered earlier with more restrictive

12For binary treatment T ∈ {−1, 1} it requires checking that, post-matching, the sample distributions of Z|(T = 1)
and Z|(T = −1) are close to each other.

13Again, for binary treatment, non-overlapping is said to have occurred if the range of {Q(T = 1|Z = Zi) : Ti = 1}
is (substantially) different from the range of {Q(T = 1|Z = Zi) : Ti = −1}.

14The observation that would have been obtained if a unit was assigned to a different treatment or given a different
dose.

10

I A single covariate ‘age’; younger people are more likely to receive treatment and
higher outcome scores.

I Linear model (LM): fits are good within groups, but overconfident in region lack of
overlap

I BART: shorter error bars, prone to bias in region lack of overlap

I Add-GP trades potential bias with increased uncertainty bands, more robust



Extension: Noncompliance in Randomized
Experiments

I Noncompliance: units take treatment different from the
assigned one

I Random treatment assigned: Zi

I Actually treatment received: Wi

I Noncompliance: Zi 6= Wi for some units

I Noncompliance can arise because, e.g. side effects,
perception of the effect of the treatment

I Noncompliance is self-selected: breaks the initial
randomization



Instrumental Variable Approach to Noncompliance

I Angrist, Imbens, and Rubin (1996, JASA) proposed an
instrumental variable (IV) approach to non-compliance

I Potential outcomes: Y (z) for z = 0,1

I The treatment received W is post-treatment (assignment),
therefore also has two potential outcomes: W (z), z = 0,1

I Observed data: Zi ,Wi = W (Zi),Yi = Y (Zi)

I The central idea is to divide units into latent subgroups
based on their compliance behavior

I Defining compliance type: Si = (Wi(0),Wi(1))



Compliance Types
I Four possible compliance types

Wi(0)

0 1
0 never-taker (n) defier (d)

Wi(1)

1 complier (c) always-taker (a)
I The true compliance type S is not observed on all units

I The observed cells of Z and W are mixture of different
compliance types

Z W S
0 0 [C, NT]
0 1 [AT, D]
1 0 [NT, D]
1 1 [C, AT]



Principal Stratification
Frangakis and Rubin (2002, Biometrics)

I A key observation: the compliance type Si does not
change according to the assignment Zi . It can be viewed
as a baseline characteristics

I Causal estimands: treatment effect for each compliance
type:

τs = E[Yi(1)− Yi(0)|Si = s], for s = c,n,a,d .

I The global intention-to-treatment (ITT) effect
τ = E[Yi(1)− Yi(0)] is a weighted average of the
compliance-specific effects:

τ =
∑

s=c,n,a,d

πsτs

where πs is the proportion of units of type s



Principal Stratification
Frangakis and Rubin (2002, Biometrics)

I More generally, noncompliance is a special case of
“post-treatment" intermediate variable

I Frangakis and Rubin (2002) generalized the IV approach
to principal stratification for the general setting of
post-treatment variables

I Compliance types are principal strata, τs are principal
causal effects

I Main challenge to inference: individual principal stratum
status is not observed; we only observed mixture of
distributions

I Additional assumptions are needed



Ignorable Assignment with Intermediate Variables
I Ignorable (unconfounded) assignment with intermediate

variables

Pr (Zi |Wi(0),Wi(1),Yi(0),Yi(1),Xi) = Pr (Zi | Xi)

I Under ignorability,
I the principal stratum membership Si is guaranteed to have

the same distribution in both treatment arms (within cells
defined by pre-treatment variables):

Si ⊥Zi | Xi

I Latent unconfoundedness: Potential outcomes are
independent of the treatment assignment given the
principal strata

(Yi (0),Yi (1)) ⊥Zi | Si ,Xi



Bayesian Inference of Principal Stratification

I With posttreatment variables, six quantities are associated
with each unit:

Xi Zi Si(0) Wi(1) Wi(0) Yi(1)

I Observed variables:
{Y obs

i = Yi(Zi),W obs
i = Wi(Zi),Zi ,Xi};

missing variables: {Y mis
i = Yi(1− Zi),W mis

i = Wi(1− Zi)}
I Bayesian inference considers the observed values of these

quantities to be realizations of random variables and the
unobserved values to be unobserved random variables

I Key to inference: impute the missing potential outcomes
and thus principal strata



General Structure of Bayesian Inference (I)

I Joint probability (density) function of all random variables

Pr (X,Z,W(0),W(1),Y(0),Y(1)) =

Pr (X) Pr (Z | X) Pr (W(0),W(1),Y(0),Y(1) | X,Z) =

Pr (X) Pr (Z | X) Pr (W(0),W(1),Y(0),Y(1) | X)

where the second equality follows from the assumption of
ignorable assignment of Z
X Ignorability implies that we can ignore Pr (Z | X)

I We condition on the observed distribution of covariates:
Pr (X) does not need to be modeled



General Structure of Bayesian Inference (II)

I Assuming unit exchangeability and by appealing to de Finetti’s theorem:

Pr (W(0),W(1),Y(0),Y(1) | X) =
∫ N∏

i=1

Pr (Wi (0),Wi (1),Yi (0),Yi (1) | Xi ;θ) p(θ) dθ =

∫ N∏
i=1

Pr (Wi (0),Wi (1) | Xi ;θ)Pr (Yi (0),Yi (1) | Xi ,Wi (0),Wi (1);θ) p(θ) dθ =

∫ N∏
i=1

Pr (Si | Xi ;θ)Pr (Yi (0),Yi (1) | Xi ,Si ;θ) p(θ) dθ

I Posterior predictive distribution of the missing potential outcomes

Pr
(

Wmis,Ymis | X,Z,Wobs,Yobs
)
=

Pr (W(0),W(1),Y(0),Y(1) | X)∫ ∫
Pr (W(0),W(1),Y(0),Y(1) | X) dWmisdYmis

∝
∫ N∏

i=1

Pr (Wi (0),Wi (1) | Xi ;θ)Pr (Yi (0),Yi (1) | Xi ,Wi (0),Wi (1);θ) p(θ) dθ



General Structure of Bayesian Inference (III)
I The predictive distribution of the missing data,

Pr
(
Smis,Ymis | X,Z,Wobs,Yobs), combines features of the

assignment mechanism with those of the distribution of the
potential outcomes

I Directly specifying Pr
(
Wmis,Ymis | X,Z,Wobs,Yobs) is

generally difficult
I Instead we start with three inputs:

I The model for principal stratum membership given the
covariates and parameters:

Pr (Wi (0),Wi (1) | Xi ;θ) = Pr (Si | Xi ;θ)

I The distributions of the potential outcomes conditional on
principal stratum, covariates and parameters:

Pr (Yi (0),Yi (1) | Xi ,Si ;θ)

I the prior distribution p(θ)



Gibbs Sampling

I To obtain the posterior distribution of the estimands
(principal causal effects), we need to obtain the joint
posterior predictive distributions Pr(Wmis,θ|X,Z,Wobs,Yobs

I Use Gibbs sampling/MCMC: iteratively draw between
Pr
(
Wmis | X,Z,Wobs,Yobs;θ

)
and

Pr
(
θ | X,Z,Wobs,Wmis,Yobs)

I Then derive the marginal posterior distribution of θ,
pobs

(
θ | X,Z,Sobs,Yobs), and thus the posterior of the

causal estimands of interest



Complete intermediate data likelihood
I The key: complete intermediate data likelihood:∏

i

Pr (Yi(0) | Si ,Xi ;θ)(1−Zi ) Pr (Yi(1) | Si ,Xi ;θ)Zi Pr (Si | Xi ;θ) .

I Without any constraints, the complete intermediate data
likelihood is a product of four components, each
corresponding to an observed cell of Z ,W and being a
mixture of two principal strata:

Lik ∝
∏

i:Zi=0,Wi=0

(πi,c fi,c0 + πi,n0fi,n0)×
∏

i:Zi=0,Wi=1

(πi,afi,a0 + πi,d fi,d0)

×
∏

i:Zi=1,Wi=0

(πi,nfi,n1 + πi,d fi,d1)×
∏

i:Zi=1,Wi=1

(πi,afi,a1 + πi,c fi,c1) ,

where fi,sz = Pr(Yi(z)|Si = s,Xi ;θ) and
πi,s = Pr(Si = s|Xi ;θ)

I Essentially this is a mixture model



Weak identifiability and additional assumptions

I Need additional assumptions to tighten the posterior
distributions
I Strong Monotonicity: no defiers

(1)Wi (1) ≥Wi (0), (2)0 < Pr(Wi = 0|Zi = 1) < 1, for all i ,

I Stochastic Exclusion Restriction for Never-Takers and
Always-takers: For s = n,a

Pr (Yi (0) | Xi ,Si = s;θ) = Pr (Yi (1) | Xi ,Si = s;θ)

I Under these assumptions, the posterior distribution of the
parameters/estimands are usually concentrated



Bayesian causal inference: Summary

I “Any complication that creates problems for one form of
inference creates problems for all forms of inference, just in
different ways" – Don Rubin (2014, interview)

I Bayesian + causal inference: anything special?

I Fundamental problem of causal inference: weakly
identifiable parameters, sensitive to priors and the outcome
model

I (paradoxical) role of propensity scores

I In high-dimensional settings: shrinkage priors can
unwillingly introduce confounding (series of work by Hahn
et al.)



Why (and When) Bayesian?

I Usual arguments: take into account of uncertainty, not rely
on large sample asymptotics

I Specific to causal inference:
I allow inference of individual causal effects

I combine with decision theory

I Particularly suitable for complex settings: post-treatment
variables (principal stratification), sequential treatments,
spatial and temporal data

I Advanced Bayesian models and methods bring new
insights and tools: Bayesian nonparametrics, Bayesian
model selection, Bayesian model averaging

I Much room to improve
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