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Causation

» Relevant questions about causation

» the philosophical meaningfulness of the notion of causation
» deducing the causes of a given effect
» understanding details of a causal mechanism

» Here we focus on measuring the effects of causes, where
statistics arguably can contribute most

» Several statistical frameworks
» graphical models (S Wright, J Pearl)
» structural equations (S Wright, T Haavelmo, J Heckman)
» potential outcomes (J Neyman, DB Rubin)



Potential Outcome Framework

» The Potential Outcome Framework: the most widely used
framework across many disciplines

» Brief history

» Randomized experiments: Fisher (1918, 1925), Neyman
(1923)

» Formulation (assignhment mechanism and Bayesian model):
Rubin (1974, 1977, 1978)

» Observational studies and propensity scores: Rosenbaum
and Rubin (1983)

» Heterogonous treatment effects and machine learning:
Athey and Imbens (2015), many others



Potential Outcome Framework: Key Components

» No causation without manipulation: a “cause” must be
(hypothetically) manipulatable, e.g., intervention, treatment

» Goal: estimate the effects of “cause”, not causes of effect

» Three integral components (Rubin, 1978):

» potential outcomes: corresponding to the various levels of a
treatment

» assignment mechanisms

» a (Bayesian) model for the science (i.e. the potential
outcomes and covariates)

» Causal effects: a comparison of the potential outcomes
under treatment and control for the same set of units



Basic Setup

» Data: a random sample of N units from a target population
» A treatment with two levels: w = 0, 1

» For each unit i, we observe the (binary) treatment status
W;, a vector of covariates X;, and an outcome Y,.°bS

» For each unit /, two potential outcomes Y;(0), Yi(1) —
implicitly invoke the Stable Unit Treatment Value
Assumption (SUTVA)

» Bold font for matrices or vectors consisting of the
corresponding variables for the N units: for example,

> X=(X,... . X)), W= (W,..., Wy
1 N



Causal Estimands (Parameter of Interest)

» Population average treatment effect (PATE):
7PTE = E[Y(1) - Yi(0)].

» Sample average treatment effect (SATE):
1N
P = 1) - Vi)
» Average treatment effect for the treated (ATT):
AT = E[Yi(1) = Yi(0)|W; = 1].

» Conditional average treatment effect (CATE):

7(x) = E[Y;(1) - Yi(0)|X; = x].



The Fundamental Problem of Causal Inference
Holland, 1986

» For each unit, we can observe at most one of the two
potential outcomes, the other is missing (counterfactual)

» Potential outcomes and assignments jointly determine the
values of the observed and missing outcomes:

Y5 = V(W) = Wi Yi(1) + (1 = W) - ¥i(0)

» Causal inference under the potential outcome framework is
essentially a missing data problem

» To identify causal effects from observed data, one must
make additional (structural or/and stochastic) assumptions



Perfect Doctor

Potential Outcomes Observed Data

Y(0) Y(1) W Y(@0) Y1)
13 14 1 ? 14
6 0 0 6 ?
4 1 0 4 ?
5 2 0 5 ?
6 3 0 6 ?
6 1 0 6 ?
8 10 1 ? 10
8 9 1 ? 9

True Observed

averages 7 5 averages 54 11



Assignment Mechanism

» A key identifying assumption is on assignment mechanism:
the probabilistic rule that decides which unit gets assigned
to which treatment

Pr(W; = 11X, Yi(0), ¥i(1))

» In randomized experiments, assignment mechanism is
usually known and controlled by investigators

> In observational studies, assignment mechanism is usually
unknown and uncontrolled



Positivity (or overlap)

Assumption 1: Positivity (or overlap):
0 < Pr(W; =1|X;,Y;(0), Yi(1)) < 1forall i.

» Positivity requires, in large samples, for all possible values
of the covariates there are both treated and control units.

» Testable from observed data



Ignorability (or unconfoundedness)
Assumption 2: Ignorability (or unconfoundedness)
Pr(W; = 1]X;, Yi(0), Yi(1)) = Pr(W; = 1]X))

Often also written as {Y;(0), Yi(1)} L Wj|X;

» Assumes that within subpopulations defined by values of
observed covariates, the treatment assignment is random

» Rules out unmeasured confounders

> ei(x) = Pr(W; = 1|X; = x) is called the propensity score
(Rosenbaum and Rubin, 1983)

» Unconfoundedness and positivity jointly define “strong
ignorability"



|dentify causal effects under unconfoundedness

» Under unconfoundedness, for w = 0, 1:

Pr(Y(w)|X) = Pr(YPS| X, W = w)

» Thus ATE can be estimated from observed data:

TPATE — BL[E(YOPS|X = x, W = 1)—E(Y|X = x, W = 0)]
» Randomized experiments satisfy unconfoundedness

» Untestable and likely violated to a degree, but invoked in
most observational studies

» Sensitivity to unconfoundedness is routinely checked
(Cornfield, 1959; Rosenbaum and Rubin, 1983b)



Classification of assignment mechanisms

» Randomized experiments:

» strong ignorability automatically holds
» good balance is (in large samples) guaranteed

» Ignorable (or unconfounded) observational studies

» strong ignorability is assumed, conditional on covariates
» balance need to be achieved

» Quasi-experiments: looking for “natural" experiments
(under assumptions)



Classification of ignorable assignment mechanisms

We will focus on ignorable assignment mechanisms and
extensions

» Standard ignorable assignment mechanism: one-time
treatment, conditional on covariates

» Sequentially ignorable: time-varying treatment

» Latent ignorable: post-treatment variables, principal
stratification

» Locally ignorable: regression discontinuity
» Weakly ignorable: multi-valued and continuous treatment
» Interference: when SUTVA is violated

» More...



Methods and Modes of Inference

» Two overarching methods
> |mputation: impute the missing potential outcomes
(model-based or matching-based)
» Weighting: weight (often function of the propensity scores)
the observed data to represent a target population

» Three modes of inference
» Frequentist: imputation, weighting, motivated by
consistency, asymptotic normality, (semiparametric)
efficiency, etc.

» Bayesian: modeling and imputing missing potential
outcomes based on their posterior distributions

» Fisherian randomization: combine randomization tests with
Bayesian methods, unique to randomized experiments



Bayesian Inference of Causal Effects

» Four quantities are associated with each sampled unit:
Yi(0), Yi(1), W, X;

> Three observed: W, Y% = Y;(W;), X;; one missing
yimis — Y/(1 _ VV,)

> Given W, there is a one-to-one map between (Ybs, Y/™s)
and (Y;(0), Yi(1)):

YOS = Yi(1)W; + Yi(0)(1 — W)

» Thus causal estimands 7 = 7(Y(0), Y(1)) can be
represented as functions 7 = (Y%, Y™ W)



General Structure (I)
Rubin, 1978, Ann. Stat.

» Bayesian inference considers the observed values of the
four quantities to be realizations of random variables and
the unobserved values to be unobserved random variables

» Pr(Y(0),Y(1),W,X): joint probability density function of
these random variables for all units

» Assuming unit-exchangeability, there exists a unknown
parameter vector 6 with a prior dist p(#) such that (de
Finetti, 1963):

PYO). Y. WX) = LTPACY0) Y. W X 0)pt0)a



General Structure (II)

> Bayesian inference of the estimand 7 = 7(YS Y™s W):
obtain the joint posterior (predictive) distributions of Y™S ¢,
and thus Y™$, and thus 7

» Factorization of the joint distribution:

Pr(Yi(0), Yi(1), Wi, Xi|0)
= Pr(W; [ Yi(0), Yi(1), X, 6w) Pr(Yi(0), Yi(1) | X, Ov) Pr(X; | 6x)

» Usually we do not want to model Pr(X;), rather we
condition on X
> We make two assumptions

» a priori distinct and independent parameters for 6y and 0y
» Ignorable assignment mechanism

Pr(W; | Yi(0), Yi(1), Xi) = Pr(W; | X)



General Structure (lII)

» Under the two assumptions, the joint posterior distribution
of (Y™S,0y) is
Pr(Y™S, gy | YOPS, W, X)

o p(By)p(Bw)p(0x) Pr(W; | Yi(0), Yi(1), Xi, 6w) Pr(Yi(0), Yi(1) | Xi, 6v) Pr(X; | 0x
N

o< p(By) [ TPr(Yi(0), Yi(1) | Xi, 6y)
i=1

» Above the terms Pr(W; | X;,0w) and Pr(X; | 6x) drop out of
the likelihood — not informative about 6y or Y™

» Need to specify “the model for science”:
Pr(Y;(0), Yi(1) | X))

» Two different specific strategies to simulate Y™



Strategy 1: Data Augmentation (Gibbs Sampling)

> lteratively simulate Y™S and 6 from
Pr(Y™s | YObS W, X, 6) and Pr(0 | Y™, YOS, W, X)

» Posterior predictive distribution of Y™:

Pr(Y™s | YO, W X, )
x Pr(Yi(0) | Yi(1), Xi,6v) T] Pr(Yi(1) | Yi(0), X:. 6v)
i Wi=1 iW;=0
» Impute missing potential outcomes
> For treated units, impute the missing Y;(0) from
Pr(Yi(0) | Yi(1), Xi, Oy x)
> For control units: impute the missing Y;(1) from
Pr(Yi(1) [ Yi(0), X, v|x)



Strategy 1: Data Augmentation (Gibbs Sampling)

» Imputation crucially depends on the model for science:
Pr(Y;(1), Yi(0)|Xi)

» But Y;(1), Y;(0) are never jointed observed, no information
at all about the association between Y;(1) an Y;(0) —
posterior = prior, and posterior of estimand = will be
sensitive to its prior



Strategy 1: Problems
» Proposed by Rubin (1978), widely used

» Problem: Observed data contain information on the
marginal distributions of the potential outcomes, but no or
little information on the association

» No clear separation of identified and non-identified
parameters
» What does identifiability mean?

» Frequentist: the parameter can be expressed as a function
of the observed data distribution

» Dogmatic Bayesian: with proper prior, all parameters are
identifiable (Lindley, 1972)

» Gustafson (2015): sensitivity of the posterior on the prior -
weak identifiability



Strategy 2: Transparent Parameterization

>

Richardson, Evans, and Robins (2010): transparent
parametrization
Separate identifiable and non-identifiable parameters

Based on the definition of conditional probability
(0°Ps — (X, YOS, W) is the observed data)

Pr(YmiS,9 ’ oObS) _ Pr(9 ‘ oObS) Pr(Ymis ‘ 9700b3)

First simulate 6 given O° from Pr(6 | O°P), then simulate
Y™ given # and O°PS from Pr(Y™s | 9, Q°Ps)

Partition the parameter (™) that governs the marginal
distributions of Y;(1) and Y;(0) from the parameter (62) that
governs the association between them

Assume 0™ and 62 are a prioriindependent



Strategy 2: Transparent Parameterization

» Posterior of 9:

Pr(f | 0°%%) o P(Q%x)P(e%x) x
H Pr(Yi(1) | Xi.69x) T] Pr(Yi(0) | Xi.6%x)

W;=0

> The posterior 67 % is updated by the likelihood, but not GY‘X
(same as prior)

> Given a posterior draw of 6,,, we can impute Y™ as in
Strategy 1

> Repeat the analysis varying 9Y|x (from 0 to 1) as sensitivity
analysis (Ding and Dasgupta, 2016)



Example of Strategy 2: Regression Adjustment

>

vV v.v Yy

Completely randomized experiment with continuous
outcome

Assume a bivariate normal model for the joint potential
outcomes

Yi(1) _ N B4 Xi of  poyog
(vio) s~ () (b )

Strategy 2: 6}y = (81, Bo, 0%, 05), 0% x =
{(Xi, Y?PS) : W; = 1} contribute to the likelihood of {51, 02}
{(X;, Y°PS) : W; = 0} contribute to the likelihood of {5y, 02}

The observed likelihood does not depend on p:
posterior = prior



Example: Regression Adjustment

» Impose standard conjugate normal-inverse x? priors to 3
and o

> For afixed p and given each draw of (31, 8o, 0%, 03), we
impute the missing potential outcomes:

> For treated units (W; = 1), draw
V()| =~ N (554 0TV~ XD, 5(1 - 9))
» For control units (W; = 0), we draw
()|~ N (3004 T = 550,301 = 7))

» Consequently we obtain the posterior distribution of any
estimands given p

> Repeat the analysis varying p from 0 to 1



Posterior distribution of causal estimands: Sample

> After obtaining the posterior draws of (Y™, 4y ), how to
calculate the posterior dist of the causal estimands?

» Different procedure — depends on the estimand: sample
vs. population parameters

» Sample parameters: all potential outcomes are viewed as
fixed values

» Example: Sample ATE (SATE)

N
S = L3 - Yi(0)
i=1

» To calculate SATE: plug in the imputed missing potential
outcomes Y™$ and the observed outcomes Y% to the
SATE definition above

» Uncertainty only comes from imputing Y™



Posterior distribution of causal estimands: Population

» Population parameters: all potential outcomes are viewed
as random variables drawn from a superpopulation

» Example: Population ATE (PATE)
= B(Y/(1) = YIO)} = [ 7 (x: 090 Pl x),

where
TP(X) =E{Y(1) | X =x; 0’$|X} —E{Y(0)| X = X;G%X}
» To calculate PATE, two ways
» Either directly use the posterior distribution of the
parameters, or
> Simulate posterior predictive draws of the observed values
Yobs and use together with the imputed missing p.o.s Y™
to calculate

» Uncertainty comes from imputing both Y™$ and Y©bs



Population vs. sample estimands

» PATE has more uncertainty than SATE, larger credible
interval

» What we often calculate is something in between: a hybrid
without requiring modeling X:

TXE/ (X 0Y|X 127’ leeY\X

where Fy is the empirical distribution of Pr(X)

» Width of credible interval can differ significantly



Example: population estimand
> Consider 6X = N-" M. 5(X;), where
6(x) = Pr(Yi(1) > Y;(0) | Xi = x, e%xae?qx)

» Assume a normal linear model: fori=1,... N,

Yi(1) : N By Xi of  poiog
(vio) tessmo~ () (5, “5°))

» Simulate 6X using the posterior draws of the parameters
based on

N
Bo)' Xi
Z {(U1+UO 2p0100)1/2}

—1

» Sensitivity parameter p € [0, 1]



Bayesian inference of causal effects: Recap

» Key assumptions

» Exchangeability (?)

> |gnorable assignment mechanism (unconfoundedness)

» Prior independence of parameters for assignment
mechanism Pr(W|X) and outcome generating mechanism
Pr(Y(1), Y(0)|X)

» Of course, the outcome model: Pr(Y (1), Y(0)|X)

» Key challenge: fundamental problem of causal inference
> Weakly identifiable parameters, sensitive to priors and the
outcome model



Overlap and Balance

» Overlap and balance of covariates play a central role in
causal inference

» Good overlap and balance reduces the sensitivity to the
outcome model — particularly crucial for Bayesian causal
inference

» In randomized experiments, valid causal inference even if
the outcome model is misspecified (because balance is
guaranteed in large samples)

» Not the case in observational studies, one has to work
hard to ensure overlap and balance



Propensity score

Rosenbaum and Rubin, 1983, Biometrika

» The propensity score: e;j(x) = Pr(W; = 1|X; = x) the
probability of receiving a treatment glven covariates

> Two key properties:

. Balancing property: W L X | e(X), equivalently,
Pr(W; =1 Xi, (X)) = Pr(W; =11 e(X))

2. Unconfoundedness: If the treatment is unconfounded given
X, then the treatment is unconfounded given e(X)

{Yi(1),Yi(0)} L Wi | Xi = {Yi(1), Yi(0)} L W, | e(X;)



Propensity score

» Propensity score is a scalar summary (summary statistic)
of the covariates w.r.t. the assignment mechanism

» Propensity score is central to ensure balance and overlap

» In Frequentist paradigm, propensity scores are used via
» Matching
» Weighting
> Subclassification
»> Regression (propensity score as a covariate)
» Combination of the above



Role of Propensity Score in Bayesian Inference

» Propensity score methods are often embraced as a
“‘model-free" alternative to (model-based) regression
adjustment

» In Bayesian paradigm, assuming unconfoundedness and a
prioriindependence of parameters, the propensity score
drops out of the likelihood function: ignorable!

» Does propensity score still matter in Bayesian causal
inference?

» Yes, it matters, a lot!



Role of Propensity Score in Bayesian Inference

» Conceptual arguments
> Rubin (1985): robust Bayesian inference — good covariate
balance is necessary for Bayesian inference of causal
effects being well-calibrated

» Wasserman and Robins (2015): as a dimension-reduction
tool

» Choice of priors: Debate between Sims and
Robins/Wasserman

» A deep philosophical question also appeared in survey
sampling (Sarndal 1978; Hansen et al. 1983; Little 2004)



Role of Propensity Score in Bayesian Inference

» Practical arguments: adding the estimated PS to the
outcome model improves inference

» Approach 1: Add the estimated propensity score as an
additional covariate to the outcome model Pr(Y(1), Y(0)|X)

» Approach 2: Calibrated Bayes (Rod Little et al.): separate
the outcome model into (1) a nonparametric function (e.g.
penalized spline) of PS, and (2) a parametric function of PS
and covariates

» Combine the best of two worlds: a flexible (Bayesian)
nonparametric model of the PS and covariates, e.g.
Gaussian Process (GP) or BART

» Practical issues: computation, particularly in big data



The feedback issue in Bayesian PS adjustment
Zigler et al (2013)

» In a full Bayesian world, a natural way is to model
simultaneously

> Pr(Y(1), Y(0)|X,PS)
> PS=P(W=1|X)
» Doing so would allow for PS uncertainty propagation in
final estimates

» However, PS estimates would be informed by the outcome
model = break unconfoundedness
> PS parameters such that PS estimates are most predictive
in the outcome model



The feedback issue in Bayesian PS adjustment
Zigler et al (2013)

» Propensity score estimation should only reflect the
treatment assignment mechanism

» PS should not be informed by the outcome

> Address that by cutting the feedback in model fitting

» Updates of PS parameters do not accommodate PS
predictive ability of the outcome

» Outcome model likelihood is not included in PS model
updates

» By cutting the feedback, PS is valid and model estimates
account or PS estimation uncertainty



Different outcome models: A toy example
Courtesy of Surya Tokdar

3 40 50 60
I

Outcome

o

LAz

Effect
N
|

—_—

T T T T
30 40 50 60

T t T T
30 40 50 60
Age

> A single covariate ‘age’; younger people are more likely to receive treatment and
higher outcome scores.

> Linear model (LM): fits are good within groups, but overconfident in region lack of
overlap

» BART: shorter error bars, prone to bias in region lack of overlap

> Add-GP trades potential bias with increased uncertainty bands, more robust



Extension: Noncompliance in Randomized
Experiments

vV v.vy vy

Noncompliance: units take treatment different from the
assigned one

Random treatment assigned: Z;

Actually treatment received: W;

Noncompliance: Z; # W, for some units
Noncompliance can arise because, e.g. side effects,
perception of the effect of the treatment
Noncompliance is self-selected: breaks the initial
randomization



Instrumental Variable Approach to Noncompliance

» Angrist, Imbens, and Rubin (1996, JASA) proposed an
instrumental variable (V) approach to non-compliance

» Potential outcomes: Y(z) for z =0, 1

» The treatment received W is post-treatment (assignment),
therefore also has two potential outcomes: W(z),z = 0,1

» Observed data: Z;, W; = W(Z), Y = Y(Z)

» The central idea is to divide units into latent subgroups
based on their compliance behavior

» Defining compliance type: S; = (W;(0), W;(1))



Compliance Types

» Four possible compliance types
W;(0)
0 1
0 | never-taker (n) defier (d)

Wi(1)

1 complier (¢)  always-taker (a)
» The true compliance type S is not observed on all units
» The observed cells of Z and W are mixture of different
compliance types

zZlwl| s

0] 0 |[C NT]
0| 1 | [AT, D]
1|0 | [NT, D]
1|1 |[C, AT]




Principal Stratification
Frangakis and Rubin (2002, Biometrics)

» A key observation: the compliance type S; does not
change according to the assignment Z;. It can be viewed
as a baseline characteristics

» Causal estimands: treatment effect for each compliance

type:
Ts = ]E[\/l(‘I) - )/I(O)|Sl = S]7 for s = ¢, na, d.
» The global intention-to-treatment (ITT) effect

T =E[Y;(1) — Y;(0)] is a weighted average of the
compliance-specific effects:
T = Z TsTs
s=c,n,a,d

where 75 is the proportion of units of type s



Principal Stratification
Frangakis and Rubin (2002, Biometrics)

» More generally, noncompliance is a special case of
“post-treatment” intermediate variable

» Frangakis and Rubin (2002) generalized the IV approach
to principal stratification for the general setting of
post-treatment variables

» Compliance types are principal strata, 75 are principal
causal effects

» Main challenge to inference: individual principal stratum
status is not observed; we only observed mixture of
distributions

» Additional assumptions are needed



Ignorable Assignment with Intermediate Variables
» Ignorable (unconfounded) assignment with intermediate
variables
Pr(Z; | Wi(0), Wi(1), Yi(0), Yi(1), X;) = Pr(Z; | X;)

» Under ignorability,

> the principal stratum membership S; is guaranteed to have
the same distribution in both treatment arms (within cells
defined by pre-treatment variables):

SiLlZ| X

» Latent unconfoundedness: Potential outcomes are
independent of the treatment assignment given the
principal strata

(Yi(0), Yi(1)) L Zi | Si, Xi



Bayesian Inference of Principal Stratification

» With posttreatment variables, six quantities are associated
with each unit:

Xi Zi Si(0) Wi(1) Wi(0) Yi(1)

» Observed variables:
(YR = Yi(Z), WPPs = Wi(Z), Z;, Xi};
missing variables: { Y™ = Y;(1 — Z;), WMs = W,(1 — Z;)}
» Bayesian inference considers the observed values of these
quantities to be realizations of random variables and the
unobserved values to be unobserved random variables

» Key to inference: impute the missing potential outcomes
and thus principal strata



General Structure of Bayesian Inference (I)

» Joint probability (density) function of all random variables

Pr(X,Z,W(0),W(1),Y(0),Y(1)) =
Pr(X) Pr(Z | X) Pr(W(0),W(1),Y(0),Y(1) | X,2) =
Pr(X) Pr(Z | X) Pr(W(0),W(1),Y(0),Y(1) | X)

where the second equality follows from the assumption of
ignorable assignment of Z
v Ignorability implies that we can ignore Pr(Z | X)

» We condition on the observed distribution of covariates:
Pr (X) does not need to be modeled



General Structure of Bayesian Inference (II)
> Assuming unit exchangeability and by appealing to de Finetti's theorem:
Pr (W(0), W(1),Y(0), Y(1) | X) = / HPr(W(o Wi(1), Yi(0), Yi(1) | X;; 6) p(6) d6 =
/HPr 1(0), Wi(1) | X;; 8) Pr (¥;(0), Yi(1) | X;, Wi(0), W(1); 6) p(6) d =
/ HPr(s,- | X;:60) Pr(¥(0), Yi(1) | X, Si:6) p(6) dé
i

> Posterior predictive distribution of the missing potential outcomes

Pr (Wml's7 Ymis | X,Z, WObS’ YObS) _ pr (W(0)7 W(1 )7 Y(O)’ Y(1 ) I X)

S [ Pr(W(0),W(1),Y(0),Y(1) | X) dWmisgymis

N
x /HPf(W/(OL Wi(1) | X;; 0) Pr(Yi(0), Yi(1) | X;, Wi(0), Wi(1); 6) p(6) dé
i=1



General Structure of Bayesian Inference (lll)

» The predictive distribution of the missing data,
Pr (S™s Y™s | X,Z, Wobs Yobs) 'combines features of the
assignment mechanism with those of the distribution of the
potential outcomes

> Directly specifying Pr (W™, Y™S | X, Z, WOPS, Yobs) js
generally difficult

> Instead we start with three inputs:

» The model for principal stratum membership given the
covariates and parameters:

Pr(W;(0), W;(1) | X;;0) = Pr(S;i | X;; 0)

» The distributions of the potential outcomes conditional on
principal stratum, covariates and parameters:

» the prior distribution p(8)



Gibbs Sampling

» To obtain the posterior distribution of the estimands
(principal causal effects), we need to obtain the joint
posterior predictive distributions Pr(W™S_g|X,Z, Wobs, yobs

» Use Gibbs sampling/MCMC: iteratively draw between
Pr (W””'S | X, Z, Wobs 'yobs, 6) and
Pr (9 | X, Z,WObS,Wmis,YObs)

» Then derive the marginal posterior distribution of @,

Pobs (0 | X, Z, S°PS, YOPs) and thus the posterior of the
causal estimands of interest



Complete intermediate data likelihood

» The key: complete intermediate data likelihood:

HPr 0) | S, X;;0)" "2 Pr(Yi(1) | S;, Xi:0)7 Pr(S; | X;: 6).

» Without any constraints, the complete intermediate data
likelihood is a product of four components, each
corresponding to an observed cell of Z, W and being a
mixture of two principal strata:

Likoc ] (michico+minofino) x [  (miafiao + miafiao)

i-Z/=0, W,=0 i-Z=0, Wi=1
X H (W/,nf/',m + 7Ti,dfi,d1) X H (7Ti,afi,a1 + 7Ti,cfi,c1) s
i:Zi=1,W;=0 i:Zi=1,W;=1

where f; s, = Pr(Yj(2)|S; = s,X;;0) and
7TI,S — PI’(S, — S’X,, 0)
» Essentially this is a mixture model



Weak identifiability and additional assumptions

» Need additional assumptions to tighten the posterior
distributions
» Strong Monotonicity: no defiers

(HWi(1) = Wi(0), (2)0 <Pr(W;=0|Z=1) <1, forall/,

» Stochastic Exclusion Restriction for Never-Takers and
Always-takers: For s =n, a

Pr(Y(0) | X;,Sj=s:0) = Pr(Y;(1) | X, S; = 5,0)

» Under these assumptions, the posterior distribution of the
parameters/estimands are usually concentrated



Bayesian causal inference: Summary

» “Any complication that creates problems for one form of
inference creates problems for all forms of inference, just in
different ways" — Don Rubin (2014, interview)

» Bayesian + causal inference: anything special?

» Fundamental problem of causal inference: weakly
identifiable parameters, sensitive to priors and the outcome
model

» (paradoxical) role of propensity scores

» In high-dimensional settings: shrinkage priors can
unwillingly introduce confounding (series of work by Hahn
etal)



Why (and When) Bayesian?

» Usual arguments: take into account of uncertainty, not rely
on large sample asymptotics

» Specific to causal inference:
» allow inference of individual causal effects

» combine with decision theory

» Particularly suitable for complex settings: post-treatment
variables (principal stratification), sequential treatments,
spatial and temporal data

» Advanced Bayesian models and methods bring new
insights and tools: Bayesian nonparametrics, Bayesian
model selection, Bayesian model averaging

» Much room to improve
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