Nonparametric Bayesian Data Analysis for Causal Inference
Part 2 — Regression
PETER MULLER, UT Austin

Scenario 5 Truth Posterior Estimate
value
o PTEN PTEN- 00
S piksca- [ pikscA- [N I o7
§ MET- MET-
£ FGFR- FGFR- 050
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N tumor_type tumor_type
” Scenario 6 Truth Posterior Estimate |
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° ® O s w e tumor_type tumor_type

left = truth; right = estimate as p(a) over

regression
repeat sim.

Slides: www.math.utexas.edu/users/pmueller/osu.pdf
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2. Regression

Regression: y; | xi = x ~ Fx(yi).
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Semiparametric Bayes, density estimation for residuals ¢;, e.g., PT
prior (Hanson & Johnson, 2002 JASA).
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2. Regression

Regression: y; | xi = x ~ Fx(yi).

1. NP on residual: y; = fo(x;) + €;, €, ~ G and G ~ p(G).
Semiparametric Bayes, density estimation for residuals ¢;, e.g., PT
prior (Hanson & Johnson, 2002 JASA).

2. Random regression mean function :
yi = f(xi)+ € and f(-) ~ p(f)

GP prior, wavelet bases, neural networks, hierarchical mixture of
experts, etc.

3. Fully non-parametric regression:
yi | xi ~ Fy., with F = {Fx, x € X} ~ p(F).

For example, DDP model, dependent PT etc.
Introduce the DDP next ...
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Example 1: Dynamic treatment regimen
Xu et al. (2016 JASA) J

[¢ Induction A

Z,=R z,-C
v

Z,=D

Problem: Frontline therapy (A) is

[ randomized, salvage therapy (B)
P SEM\ 2,-D is usually not randomized.
o Adjust for the lack of
beath (=2 randomization.

Motivating leukemia trial
Aim: BNP approach to evaluate DTRs, using model-based inference to
undo the lack of randomization.
@ 4 induction trts: FAl, FAI+ATRA, FAI+GCSF,
FAI+ATRA+GCSF.
e 2 salvage trts: HDAC or not.
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BNP Model for Evaluating DTRs

Data:
Outcome: Y* = log(Tk) = (log) k" transition time (e.g., R — D)
Covariates: x*, incl. T¢ ¢ < k
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BNP Model for Evaluating DTRs

Data:

Outcome: Y* = log(Tk) = (log) k" transition time (e.g., R — D)
Covariates: x*, incl. T¢ ¢ < k

Pars: F = {FK;, k=1,...,K}, (unknown) distributions of 7 transition
times

Likelihood:
K

K
[I p(v 1 x*F)=]] Fa(¥ )
k=1

k=1
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Data:

Outcome: Y* = log(Tk) = (log) k" transition time (e.g., R — D)
Covariates: x*, incl. T¢ ¢ < k

Pars: F = {FK;, k=1,...,K}, (unknown) distributions of 7 transition
times

Likelihood:
K

K
I p(Y* 1 x5, 7) =] Fa(Y")
k=1 k=1
Prior: BNP prior for F

F={Ff xeX,} ~DDP, k=1,...,K

with F = 350 ph N(y; 6 . %)
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BNP Model for Evaluating DTRs

Data:

Outcome: Y* = log(Tk) = (log) k" transition time (e.g., R — D)
Covariates: x*, incl. T¢ ¢ < k

Pars: F = {FK;, k=1,...,K}, (unknown) distributions of 7 transition
times

Likelihood:
K

K
I p(Y* 1 x5, 7) =] Fa(Y")
k=1 k=1
Prior: BNP prior for F

F={Ff xeX,} ~DDP, k=1,...,K

with Ff = Yo prN(y; 9,’1)(, ah).
GP prior on {eﬁ,x}x
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Prior: (skip “k" superindex for the moment)

Fe =Y neoPn N(y; OF ., o).
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Prior: (skip “k" superindex for the moment)

Fe =Y neoPn N(y; OF ., o).
@ stick-breaking prior on pp

@ GP prior on the functions {6}« }«, dependent across x, independent
across h

Regression slide 5 of 35



Results: Survival regression and optimal policy

Survival regression: for each TX, using
DDP mix of normal
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Results: Survival regression and optimal policy

Salvage = HDAC, Age=76

—— FAI+ATRA
— FAI+GCSF
—— FAI+ATRA+GCSF

Survival regression: for each TX, using
DDP mix of normal o

urvival
0

Prior support: full prior support;
BNP is always right; this mitigates
concerns about extrapolation.

survival regr for TFPP
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Comparing policies

Overall survival for alternative policies (A, By, B).

(FAI, HDAC, HDAC)

(FAI, HDAC, OTHER) o

(FAI, OTHER, HDAC)

(FAI, OTHER, OTHER) o
(FAI+ATRA, HDAC, HDAC)
(FAI+ATRA, HDAC, OTHER)
(FAI+ATRA, OTHER, HDAC)
(FAI+ATRA, OTHER, OTHER) |

(FAHGCSF, HDAC, HDAC) -|
(FAI+GCSF, HDAC, OTHER)
(FAHGCSF, OTHER, HDAC) -|
(FAI+GCSF, OTHER, OTHER)
(FAI+ATRA+GCSF, HDAC, HDAC) |
(FAI+ATRA+GCSF, HDAC, OTHER) -|

(FAI+ATRA+GCSF, OTHER, HDAC) |

(FAI+ATRA+GCSF, OTHER, OTHER)

200 300 400 500 600 700 800 900
0S times (days)

Regression

Potential outcomes: evaluate mean OS for

possible treatment policies
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Comparing policies

Overall survival for alternative policies (A, By, B).

(FAI, HDAC, HDAC)

(FAI, HDAC, OTHER) o
(FAI, OTHER, HDAC)
(FAI, OTHER, OTHER) o
(FAI+ATRA, HDAC, HDAC)

. Potential outcomes: evaluate mean QS for
., possible treatment policies

(FAI+ATRA, HDAC, OTHER) |
(FAI+ATRA, OTHER, OTHER) |
(FAI+GCSF, HDAC, HDAC) . .
(FavGESE HOAG OTHER) 1 Optimal policy: compare by mean OS
(FAI*GCSF, OTHER, HDAC) |
(FAI+GCSF, OTHER, OTHER) —
(FAI+ATRA+GCSF, HDAC, HDAC) -|
(FAI+ATRA+GCSF, HDAC, OTHER)
(FAI+ATRA+GCSF, OTHER, HDAC)

(FAI+ATRA+GCSF, OTHER, OTHER)

200 300 400 500 600 700 800 900
0S times (days)
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Comparison with double robust methods

Two simulations to compare with inverse prob weighting, using correct
model (left) and mis-specified model (right)

Density plot of causal effects

3.0

—— Truth
—— DDP-GP
IPTW
| — AIPTW
«~ —— linear regression
e
B
2z
B n
5 -
[s]
o
s
w |
S
o
(=] I I I

1 2 3 4 5 6 7

N =1000 Bandwidth =0.1786
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Comparison with double robust methods

Two simulations to compare with inverse prob weighting, using correct
model (left) and mis-specified model (right)

Density plot of causal effects

° —— Truth
—— DDP-GP
IPTW
w o — AIPTW
«~ —— linear regression
g - I I I
1 2 3 4 5 6 7
N =1000 Bandwidth = 0.1786 13nh\‘\.h,) ‘3\\h¥‘)h/) (@, hv‘>hw) (@, n,“ bzz) (a,h,‘w,,) (@2.0:.021) (ﬂvb‘nhw) (ﬂvb‘mhﬂ)
single event time DTR, with both
(correct model) models wrong
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Example 2: Semicompeting risks

Xu, Scharfstein, M and Daniels (2019, arXiv). Another application of
(almost) the same model for pairs of event times.

Event times: progression P; & overall survival D;
under control (j = 0) and treatment (j = 1).
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Example 2: Semicompeting risks

Xu, Scharfstein, M and Daniels (2019, arXiv). Another application of
(almost) the same model for pairs of event times.

Event times: progression P; & overall survival D;
under control (j = 0) and treatment (j = 1).

Censoring: D; censors Pj;
and independent censoring C;

Inference: compare P; adjusting for D;

Inference target: conditional odds

7_(u):px(P1<u]Do>u,D1>u)
x px(P0<u’D0>U,D1>U)

Regression slide 9 of 35



Joint distribution for P;, D;

Identifiability: Let
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Joint distribution for P;, D;
Identifiability: Let

and
Vi(s | t) = p(P; <'s,P; < Dj | Dj = t).
s < t (for the moment, ignoring regression on “x").

Under random censoring G; and V; are identifiable —
just use the corresponding sample statistics.
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s < t (for the moment, ignoring regression on “x").
Under random censoring G; and V; are identifiable —
just use the corresponding sample statistics.

Bivariate sub-distribution: together G; & V; define

Fi(s,t) = p(P1 < s,D; < t, Py < Dy)

s < t, and same for EO.
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Joint distribution for P;, D;
Identifiability: Let

and
Vi(s | £) = p(P; < 5,P; < Dy | Dy = ¢).

s < t (for the moment, ignoring regression on “x").
Under random censoring G; and V; are identifiable —
just use the corresponding sample statistics.

Bivariate sub-distribution: together G; & V; define

Fi(s,t) = p(P1 < s,D; < t, Py < Dy)

s < t, and same for EO.

Random prob measures, Fi(s,t) & Fo(s,t) imply F1 & Fo.
DDP mix of normals, as before
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Copula G(Do, Dl)

Copula: Link Fg and F; with a normal copula.
® = standard normal c.d.f and
®, , = bivariate normal with correlation p.
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Copula: Link Fg and F; with a normal copula.
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®, , = bivariate normal with correlation p.

G(Do, Ds; p) = ®2,, [®7H{Go(Do)}, &~ H{Gi(D1)}]
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Copula G(Do, Dl)

Copula: Link Fg and F; with a normal copula.
® = standard normal c.d.f and
®, , = bivariate normal with correlation p.

G(Do, Ds; p) = ®2,, [®7H{Go(Do)}, &~ H{Gi(D1)}]

p is not identifiable — choice of p is an assumption.
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Odds of progression

Then

_ fP1<u fDoZu fDlzu dVl(Pl ‘ Dl?x) dGX(D07D1)
fP0<u fD()Zu fD12u dVO(PO | D]_)./X dGX(D()’ Dl)

Tx(U)
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Results — Brain tumor study

Time to progression
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Results — Brain tumor study

‘Time to progression
‘Time to progression
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Results — Brain tumor study

‘Time to progression

Time to Death

p(D1, P1) 7(u) (on log scale!)
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BNP regression by covariate-dependent partitions

Define BNP regression by
© random partition, indexed by covariates;
@ cluster-specific sampling model.

— next topic..
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3. Classification

Categorical x;: different subpopulations of interest
Aim: classify a new patient as x,11 = x € {0,1}
Model:
yi|xi=1~ Fyand {Fs; x=0,1} ~ DDP

as before (GP simplifies to bivariate normal for x € {0,1}),
but ...
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3. Classification

Categorical x;: different subpopulations of interest

Aim: classify a new patient as x,11 = x € {0,1}
Model:

yi| xi=1~ Fyand {Fs; x=0,1} ~ DDP

as before (GP simplifies to bivariate normal for x € {0,1}),
but ...

Simple augmentation: with

allows the desired . ..

Classification: p(xp+1 = 1| data) — that's all! (de la Cruz et al., 2007
ApplStat)

Classification
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Example 3: Pregnancy classification
De la Cruz-Mesia et al. (2007, ApplStat) }

Data: hormone data yj; for n =173
pregnant women,
repeat mmt at times t;;,
j = 1, N I

Subpopulations: x; = 0, normal
pregnancies, ng = 124 women
x; = 1, abnormal, ny = 49

20 40 60 80
DAY

Sampling model: y;; | Xi = x,...~ N(mmag)
with mjj = 9,/ {]_ + e_(tij_ﬂlx)/ﬂk}
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o_
- Bt -
o_| ] .
o
—— FO ~ p(FO|dta) ©
—— F1 -~ p(Fi|dta) S
- - E(FO|dta) — 13
0| = - E(F1i|dta) - 135
-
©_|
QO
> W
o] X
- b‘:v
h
w0 ]
° N
N
<_| .--A".'"‘«‘;*J‘R‘Q'-‘x'!ﬂﬁ“
o
T T T T T T T T T T T
2 3 4 5 6 0 1 2 3 4 5
X m
(a) E(Fx | data) (b)p(xn+1 = 1] ynt1,1...m, data)

Estimated Fy under x = 0 (thick black curve) and x = 1 (thick red or
grey) (panel a), and posterior probability p(xp+1 = 1| ¥Ynt1.1..m, data)
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2. Clustering

Recall: DP Mixtures: convolution of discrete F = ) ppdpm, with
(continuous) kernel, e.g., normal

Gly) = /N(yye,a2) dF(6), F ~DP
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Random Partition Models

Product partition model (PPM): cohesion functions c(S;) define similarity

of a cluster,
K

p(on) o< [T e(Sp).

j=1
Hartigan (1990 Comm Stat), Barry and Hartigan (1993 JASA)
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Random Partition Models

Product partition model (PPM): cohesion functions c(S;) define similarity

of a cluster,
K

p(pn) o [T e(5)-

j=1
Hartigan (1990 Comm Stat), Barry and Hartigan (1993 JASA)

Sampling model: conditional on partition p,, assume exchangeability,

k
y" o) =119 11 Pl ¢) (*)

j=1 fGSj

with cluster-specific parameters ¢J*
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Random Partition Models

Product partition model (PPM): cohesion functions c(S;) define similarity

of a cluster,
K

p(pn) o [T e(5)-

j=1
Hartigan (1990 Comm Stat), Barry and Hartigan (1993 JASA)

Sampling model: conditional on partition p,, assume exchangeability,

k
y" o) =119 11 Pl ¢) (*)

j=1 fGSj

with cluster-specific parameters ¢J*
Prior p(qﬁ)‘): conjugate ...
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Covariate-dependent PPM (PPMx)

M et al. (2011 JCGS), Quintana et al. (2015 ScandJS)

Random partition: to favor clusters of patients with similar covariates,
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define g(x7) > 0 to characterize the similarity of {x;; i € S;} with low
values for bad clusters:
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Random partition: to favor clusters of patients with similar covariates,
define g(x7) > 0 to characterize the similarity of {x;; i € S;} with low
values for bad clusters:

k
plpn | x") o< [T 2(x) - <($))
j=1

Similarity function: easy computation with
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Random partition: to favor clusters of patients with similar covariates,
define g(x7) > 0 to characterize the similarity of {x;; i € S;} with low
values for bad clusters:

k

p(on | x") o [T &(x) - e(S))
j=1

Similarity function: easy computation with
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Covariate-dependent PPM (PPMx)

M et al. (2011 JCGS), Quintana et al. (2015 ScandJS)

Random partition: to favor clusters of patients with similar covariates,
define g(x7) > 0 to characterize the similarity of {x;; i € S;} with low
values for bad clusters:

k

plon | x") o [T 2 () - e(S))

j=1
Similarity function: easy computation with

g0g) = [ TLaba 1) ot ddgg

iESj

using, e.g., q(x; | &) = N(&, V) and for continuous x;,
and similar conjugate choices for categorical, ordinal and counts.
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Example

Example 4: Survival regression with PPMx

M, Quintana & Rosner (2011 JCGS) analyze data from a study (CALGB
9082) of breast cancer patients.

Treatment: high dose (A) versus low dose (B) chemotherapy
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Example

Example 4: Survival regression with PPMx

M, Quintana & Rosner (2011 JCGS) analyze data from a study (CALGB
9082) of breast cancer patients.

Treatment: high dose (A) versus low dose (B) chemotherapy
Data: 765 patients randomized to A vs. B.
Response: time until progression or death

Covariates: @ Categorical: dose (A vs. B), menopausal status, estrogen
use
e Continuous: age, initial tumor size,
@ Count: number of positive lymph nodes
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Example

Example 4: Survival regression with PPMx

M, Quintana & Rosner (2011 JCGS) analyze data from a study (CALGB
9082) of breast cancer patients.

Treatment: high dose (A) versus low dose (B) chemotherapy
Data: 765 patients randomized to A vs. B.
Response: time until progression or death

Covariates: @ Categorical: dose (A vs. B), menopausal status, estrogen
use
e Continuous: age, initial tumor size,
@ Count: number of positive lymph nodes

Model: PPMx, with cluster-specific normal sampling
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Clustering

1.0

0.8

0.6

0.4

0.2

TS- HIER+

TS+ HI ER+
HI ER+

TS-HI

- TS-

HI
TS- ER+
(baseline)
ER+
ER+

20 40 60 80
MONTHS

S(t | x) by covariates

T T
100 120
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—— TS-HIER+
--- TS+HIER+
° HI ER+
<7 -~ TS-HI
. Ts-
- H
— TS- ER+
@ _| — (baseline)
o
0
©
@4
< _| - -
o
~
pR
T T T T T T
0 20 40 60 80 100 120
MONTHS

S(t | x) by covariates

BNP regression: use the PPMx for BNP regression; allowing regression
with variable dimension covariate vector!
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Bayesian Subgroup analysis

Subroup analysis problem: inference on exceptions from overall conclusion,
typically for a clinical study, for

@ a “benefitting population”,
VS.
@ eligible population of the trial
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VS.
@ eligible population of the trial
Approaches :

e Treatment/cov interaction: Dixon and Simon (1991 Bmcs), Jones
et al. (2011 ClinTrials)
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Subroup analysis problem: inference on exceptions from overall conclusion,
typically for a clinical study, for

@ a “benefitting population”,
VS.
o eligible population of the trial
Approaches :
e Treatment/cov interaction: Dixon and Simon (1991 Bmcs), Jones
et al. (2011 ClinTrials)
@ Tree based methods: Foster, Taylor & Ruberg (2011 StatMed)

@ Model selection: Berger, Wang and Shen (2014, J Biopharm
Stat), Sivaganesan et al. (2011 StatMed)
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Bayesian Subgroup analysis

Subroup analysis problem: inference on exceptions from overall conclusion,
typically for a clinical study, for

@ a “benefitting population”,
VS.
@ eligible population of the trial
Approaches :

e Treatment/cov interaction: Dixon and Simon (1991 Bmcs), Jones
et al. (2011 ClinTrials)

@ Tree based methods: Foster, Taylor & Ruberg (2011 StatMed)

@ Model selection: Berger, Wang and Shen (2014, J Biopharm
Stat), Sivaganesan et al. (2011 StatMed)

@ Decision problem: next slides...
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Decision Problem

Data: response y;, covariates x; = (Xj1, - . ., Xip)-
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Data: response y;, covariates x; = (Xj1, - . ., Xip)-

Actions: Report a subgroup of patients who most benefit from the
experimental therapy:

Covariates: I C {1,...,p}
Levels: x* = (x¥, j € 1),
(possibly restrict continuous X} to fixed thresholds)
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Decision Problem

Data: response y;, covariates x; = (Xj1, - . ., Xip)-

Actions: Report a subgroup of patients who most benefit from the
experimental therapy:

Covariates: I C {1,...,p}
Levels: x* = (x¥, j € 1),
(possibly restrict continuous X} to fixed thresholds)

Decision problem: separate inference (predicting y,+1), with flexible model
Vs.
decision (report subpopulation), parsimoniously
@ no need for multiplicity control
@ arbitrary prob model
o disentagle stat significance vs. clinical relevance
@ allow for variable # covs.
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Utility: we favor a subpopulation with difference (relative to the overall
population) in trt effect, large size and parsimonious description with

e Event time: e.g., for an y; = PFS (event time), this could be
based on log hazard ratio
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Utility: we favor a subpopulation with difference (relative to the overall
population) in trt effect, large size and parsimonious description with

e Event time: e.g., for an y; = PFS (event time), this could be

based on log hazard ratio
o(5.6) = (LR(2.0) — ). L

where 6 are parameters that index the sampling model.
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Utility: we favor a subpopulation with difference (relative to the overall
population) in trt effect, large size and parsimonious description with

e Event time: e.g., for an y; = PFS (event time), this could be
based on log hazard ratio
n(a)(\

u(a,0) = (LR(a,0) — ) - (1)

where 6 are parameters that index the sampling model.
o Continous outcome: e.g., % tumor shrinkage, this could be based
on predictive average treatment effect (PATE),
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Utility: we favor a subpopulation with difference (relative to the overall
population) in trt effect, large size and parsimonious description with

e Event time: e.g., for an y; = PFS (event time), this could be
based on log hazard ratio

~_n(a)°

u(a,0) = (LR(a,0) — 5) (1)

where 6 are parameters that index the sampling model.

o Continous outcome: e.g., % tumor shrinkage, this could be based
on predictive average treatment effect (PATE),
averaged over x; and already averaged w.r.t. p(@ | data).
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Utility: we favor a subpopulation with difference (relative to the overall
population) in trt effect, large size and parsimonious description with

e Event time: e.g., for an y; = PFS (event time), this could be
based on log hazard ratio

n(a)®

u(a,0) = (LR(a,0) — ) - (1)

where 6 are parameters that index the sampling model.
o Continous outcome: e.g., % tumor shrinkage, this could be based
on predictive average treatment effect (PATE),
averaged over x; and already averaged w.r.t. p(@ | data).
{PATEss(a) — 8} - L2 if a £ Hy
U(a) =
Uug if a= Ho,

where Hg, Hy are special actions,
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Utility: we favor a subpopulation with difference (relative to the overall
population) in trt effect, large size and parsimonious description with

e Event time: e.g., for an y; = PFS (event time), this could be
based on log hazard ratio

u(3,6) = (LR(2,0) — 8) - —2)_ (1)

where 6 are parameters that index the sampling model.
o Continous outcome: e.g., % tumor shrinkage, this could be based
on predictive average treatment effect (PATE),
averaged over x; and already averaged w.r.t. p(@ | data).
{PATEss(a) — 8} - L2 if a £ Hy
U(a) =
Uug if a= Ho,
where Hg, Hy are special actions,
with 3 > 0 a fixed clinically decided threshold and n(a) is the size of
the subpopulation.

0 indexes the sampling model
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Utility: we favor a subpopulation with difference (relative to the overall
population) in trt effect, large size and parsimonious description with

e Event time: e.g., for an y; = PFS (event time), this could be
based on log hazard ratio

n(a)®

u(a,0) = (LR(a,0) — ) - (1)

where 6 are parameters that index the sampling model.
o Continous outcome: e.g., % tumor shrinkage, this could be based
on predictive average treatment effect (PATE),
averaged over x; and already averaged w.r.t. p(@ | data).
{PATEss(a) — 8} - L2 if a £ Hy
U(a) =
Uug if a= Ho,
where Hg, Hy are special actions,
with 3 > 0 a fixed clinically decided threshold and n(a) is the size of
the subpopulation.
6 indexes the sampling model (any model for p(y | x, 0))
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Bayes rule: Report a* = argmax, [ u(a, ) dp(0 | data)
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Bayes rule: Report a* = argmax, [ u(a, ) dp(0 | data)
Alternative utility: Foster, Taylor & Ruberg (2011, StatMed) use

Q(A) = enhanced treatment effect — average trt effect

and sensitivity and specificity to evaluate a reported subpopulation A.
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Bayes rule: Report a* = argmax, [ u(a, ) dp(0 | data)
Alternative utility: Foster, Taylor & Ruberg (2011, StatMed) use

Q(A) = enhanced treatment effect — average trt effect

and sensitivity and specificity to evaluate a reported subpopulation A.

Model: Decicsion problem and solution meaningful for any model.
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3. Probability Model

Flexible BNP model. The BNP model “is always right.”
o Event time: for example, PPMx for the event time
e Continuous outcome: e.g., DDP, BART
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Example 5: Phase Il Study of NSCL Patients
Morita & M, 2017 Bmcs J

Patients: advanced non-small cell lung cancer, n = 267
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Patients: advanced non-small cell lung cancer, n = 267

Treatment: carboplatin (N) (ng = 130) vs. paclitaxel + carboplatin (C)
(n = 137).
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Example 5: Phase Ill Study of NSCL Patients
Morita & M, 2017 Bmcs }

Patients: advanced non-small cell lung cancer, n = 267

Treatment: carboplatin (N) (ng = 130) vs. paclitaxel + carboplatin (C)
(n1 = 137).

Baseline covariates: pharmacologically relevant gene expressions, including
16 mRNA (mR1 - mR16) and 1 protein (Pn1) expressiaon levels
(p=17).
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Example 5: Phase Ill Study of NSCL Patients
Morita & M, 2017 Bmcs }

Patients: advanced non-small cell lung cancer, n = 267

Treatment: carboplatin (N) (ng = 130) vs. paclitaxel + carboplatin (C)
(n1 = 137).

Baseline covariates: pharmacologically relevant gene expressions, including
16 mRNA (mR1 - mR16) and 1 protein (Pn1) expressiaon levels
(p=17).

Outcome: y; =maxTS% (max tumor size shrinkage from baseline)
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Results
Implement subgroup analysis for the phase Il NSCL trial,
restricting subgroups to |/| < 2 covariates.

(¢, €)= (0.25, 0.15)

Q 67
67|
2 = 2 2
Q
X6 X6 X2 X6 X2

(¢, €)= (0.35, 0.25)

5
=
Xe X2 X6

Subgroup Analysis

Q33

X6

X2
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Example 6: A basket trial design for targeted therapies
Xu et al. (2018 Biometrical J) J

Subgroup analysis with a purpose.

IMPACT 1I: patients across different cancers. Based on molecular
alterations patients are eligible for certain targeted therapies (TT)

Subgroup analysis: find subgroup of tumor/mutation pairs who most
benefit from TT
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Selecting the subpopulations

@ Based on a flexible probability model: PPMx
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Selecting the subpopulations

@ Based on a flexible probability model: PPMx
e Utility function: u(a,...) (1) for event time, PFS
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Selecting the subpopulations

Based on a flexible probability model: PPMx

Utility function: u(a,...) (1) for event time, PFS
Report the subpopoulations with largest expected utility
Adaptive treatment allocation

Backet trial <slide 31 of 35



Simulation

6 scenarios: overall treatment effect (trt);
interaction z X mutation X tumor,

z € {0, 1}, mutation € {BRAF, PIK3CA, PTEN},
tumors € {BRCA, Lung, Ovary}.
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Simulation

6 scenarios: overall treatment effect (trt);
interaction z X mutation X tumor,

z € {0, 1}, mutation € {BRAF, PIK3CA, PTEN},
tumors € {BRCA, Lung, Ovary}.

trt  Interactions (coefficient)
Hy 0 none

0.4 none

0 BRAF*Lung*z (0.4)
0 PIK3CA*BRCA*z (0.3), BRAF*Lung*z (0.3)
PTEN*Lung*z(0.4)
5 0 PIK3CA*BRCA*z (
BRAF*Lung*z(0.3)

6 0 BRAF*BRCA(0.4), BRAF*Ovary*z (0.3),
BRAF*Lung*z(0.4)

0.3), BRAF*Ovary*z (0.4)
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Scenario 3 Truth Posterior Estimate

value

< PTEN- PTEN- ® 0
S PIK3CA- PIK3CA- I e
8 MET- MET -
g FGFR- FGFR- 0.50
BRAF- [ BRAF- s 0.25
BRCA ~ Ovary  Lung BRCA Ovary Lung 0.00
tumor_type tumor_type
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Scenario 3 Truth Posterior Estimate

< PTEN- PTEN- ®
.S PIK3CA- PIK3CA- I o
,g MET - MET -
E FGFR- FGFR- 0.50
BRCA ~ Ovary  Lung BRCA  Ovary Lung 0.00
tumor_type tumor_type
Scenario 4 Truth Posterior Estimate |
value
PTEN I PTEN 1.00
S pisca- [N e
g MET - MET -
E FGFR- FGFR- 0.50
BRAF- - BRAF- - 0.25
BRCA ~ Ovary  Lung BRCA  Ovary Lung 0.00
tumor_type tumor_type

left = truth; right = estimate as p(a) over repeat sim.
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PTEN-
PIK3CA-
MET -
FGFR-
BRAF-

mutation

Backet trial

Scenario 5 Truth

Ov'ary Lu'ng
tumor_type

BRCA

Posterior Estimate

PTEN- value
MET-
FGFR- 0.0
BRCA Ov'ary Lu'ng 0.00
tumor_type
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Scenario 5 Truth
PTEN-

pPikscA- 1IN
MET -
FGFR-
BRAF- [ —
BRCA  Ovary  Lung
tumor_type

mutation

Scenario 6 Truth

PTEN-
PIK3CA-
MET -
FGFR-
srAF- [
BRCA Ovary  Lung
tumor_type

mutation

Posterior Estimate
PTEN-

riksca- GG
MET-
FGFR-
BRCA Ov'ary Lu'ng
tumor_type

Posterior Estimate

PTEN-
PIK3CA-
MET -
FGFR-
srAr- [
BRCA Ov'ary Lu'ng
tumor_type

left = truth; right = estimate as p(a) over repeat sim.

Backet trial

value
1.00

I 0.75
0.50

0.25

0.00

value

1.00
I 0.75
0.50

0.25

0.00
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Summary

o Definition: BNP = prob models for infinite dim parameters.
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Summary

o Definition: BNP = prob models for infinite dim parameters.

SSM

— |

Gibbs-type  stick—breaking

AN

NIGP

NRMI

PT DDP

Summary
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Levy proc
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NTR IBP

BeSt



Summary

o Definition: BNP = prob models for infinite dim parameters.
Levy proc

SSM (=CRM=ind.incr)

Gibbs-type  stick—breaking NRMI BP BeP

AN

NIGP
F=l-exp(—-CRM)
PPM PY
N \ NGaP NTR IBP

BeSt
PT DDP

@ Flexible models for full probabilistic description of all uncertainties

e Computation intensive; nonsense in — rubbish out :-)
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