
Nonparametric Bayesian Data Analysis for Causal Inference

Part 2 – Regression

Peter Müller, UT Austin

0 20 40 60 80 100 120

0.
2

0.
4

0.
6

0.
8

1.
0

MONTHS

S

TS− HI ER+ 
TS+ HI ER+ 
      HI ER+ 
TS− HI     
TS−        
      HI     
TS−    ER+ 
(baseline) 
         ER+ 
TS+    ER+ 

regression

BRAF

FGFR

MET

PIK3CA

PTEN

BRCA Ovary Lung
tumor_type

m
ut

at
io

n

Scenario 5 Truth

BRAF

FGFR

MET

PIK3CA

PTEN

BRCA Ovary Lung
tumor_type

Posterior Estimate

0.00

0.25

0.50

0.75

1.00
value

BRAF

FGFR

MET

PIK3CA

PTEN

BRCA Ovary Lung
tumor_type

m
ut

at
io

n

Scenario 6 Truth

BRAF

FGFR

MET

PIK3CA

PTEN

BRCA Ovary Lung
tumor_type

Posterior Estimate

0.00

0.25

0.50

0.75

1.00
value

left = truth; right = estimate as p(a) over
repeat sim.

Slides: www.math.utexas.edu/users/pmueller/osu.pdf

slide 1 of 35



2. Regression

Regression: yi | xi = x ∼ Fx(yi ).

1. NP on residual: yi = fθ(xi ) + εi , εi ∼ G and G ∼ p(G ).
Semiparametric Bayes, density estimation for residuals εi , e.g., PT
prior (Hanson & Johnson, 2002 JASA).

2. Random regression mean function :
yi = f (xi ) + εi and f (·) ∼ p(f )
GP prior, wavelet bases, neural networks, hierarchical mixture of
experts, etc.

3. Fully non-parametric regression:
yi | xi ∼ Fxi , with F = {Fx , x ∈ X} ∼ p(F).
For example, DDP model, dependent PT etc.
Introduce the DDP next . . .
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Example 1: Dynamic treatment regimen

Xu et al. (2016 JASA)

Resistance	   CR	  

	  	  	  Salvage	  	  	  	  B1

Z1 = D

Z1 = R Z1 =C

Death	  

Progression	  

	  	  	  Salvage	  	  	  	  B 2

Z3 = P

Z3 = D

Induc7on	  A

Motivating leukemia trial

Problem: Frontline therapy (A) is
randomized, salvage therapy (B)
is usually not randomized.
Adjust for the lack of
randomization.

Aim: BNP approach to evaluate DTRs, using model-based inference to
undo the lack of randomization.

4 induction trts: FAI, FAI+ATRA, FAI+GCSF,
FAI+ATRA+GCSF.
2 salvage trts: HDAC or not.
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BNP Model for Evaluating DTRs

Data:

Outcome: Y k = log(T k) = (log) kth transition time (e.g., R → D)
Covariates: x

k , incl. T `, ` < k

Pars: F = {F k ; k = 1, . . . ,K}, (unknown) distributions of 7 transition
times

Likelihood:
K∏

k=1

p(Y k | xk ,F) =
K∏

k=1

F k
x
k (Y k)

Prior: BNP prior for F

F = {F k
x ; x ∈ X , } ∼ DDP, k = 1, . . . ,K

with F k
x =

∑∞
h=0 p

k
h N(y ; θkh,x , σ

k).

GP prior on {θkh,x}x
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Prior: (skip “k” superindex for the moment)
Fx =

∑∞
h=0 ph N(y ; θkh,x , σ).

stick-breaking prior on ph
GP prior on the functions {θh,x}x , dependent across x , independent
across h
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Results: Survival regression and optimal policy

Survival regression: for each T k
x

, using
DDP mix of normal

Prior support: full prior support;
BNP is always right; this mitigates
concerns about extrapolation.
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Comparing policies

Overall survival for alternative policies (A,B1,B2).

(FAI+ATRA+GCSF, OTHER, OTHER)

(FAI+ATRA+GCSF, OTHER, HDAC)

(FAI+ATRA+GCSF, HDAC, OTHER)

(FAI+ATRA+GCSF, HDAC, HDAC)

(FAI+GCSF, OTHER, OTHER)

(FAI+GCSF, OTHER, HDAC)

(FAI+GCSF, HDAC, OTHER)

(FAI+GCSF, HDAC, HDAC)

(FAI+ATRA, OTHER, OTHER)

(FAI+ATRA, OTHER, HDAC)

(FAI+ATRA, HDAC, OTHER)

(FAI+ATRA, HDAC, HDAC)

(FAI, OTHER, OTHER)

(FAI, OTHER, HDAC)

(FAI, HDAC, OTHER)

(FAI, HDAC, HDAC)

OS times (days)
200 300 400 500 600 700 800 900

Potential outcomes: evaluate mean OS for
possible treatment policies

Optimal policy: compare by mean OS
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Comparison with double robust methods

Two simulations to compare with inverse prob weighting, using correct
model (left) and mis-specified model (right)
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Example 2: Semicompeting risks

Xu, Scharfstein, M and Daniels (2019, arXiv). Another application of
(almost) the same model for pairs of event times.

Event times: progression Pj & overall survival Dj

under control (j = 0) and treatment (j = 1).

Censoring: Dj censors Pj ;
and independent censoring Cj

Inference: compare Pj adjusting for Dj

Inference target: conditional odds

τx(u) =
px(P1 < u | D0 > u,D1 > u)

px(P0 < u | D0 > u,D1 > u)
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Joint distribution for Pj ,Dj

Identifiability: Let
Gj = p(Dj)

and
Vj(s | t) = p(Pj ≤ s,Pj < Dj | Dj = t).

s < t (for the moment, ignoring regression on “x”).
Under random censoring Gj and Vj are identifiable –
just use the corresponding sample statistics.

Bivariate sub-distribution: together Gj & Vj define

F̃1(s, t) = p(P1 ≤ s,D1 ≤ t,P1 ≤ D1)

s ≤ t, and same for F̃0.

Random prob measures, F1(s, t) & F0(s, t) imply F̃1 & F̃0.
DDP mix of normals, as before
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Copula G (D0,D1)

Copula: Link F0 and F1 with a normal copula.
Φ = standard normal c.d.f and
Φ2,ρ = bivariate normal with correlation ρ.

G (D0,D1; ρ) = Φ2,ρ

[
Φ−1{G0(D0)},Φ−1{G1(D1)}

]
ρ is not identifiable – choice of ρ is an assumption.
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Odds of progression

Then

τx(u) =

∫
P1<u

∫
D0≥u

∫
D1≥u dV1(P1 | D1, x) dGx(D0,D1)∫

P0<u

∫
D0≥u

∫
D1≥u dV0(P0 | D1), x dGx(D0,D1)
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Results – Brain tumor study
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p(D1,P1) τ(u) (on log scale!)
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BNP regression by covariate-dependent partitions

Define BNP regression by

1 random partition, indexed by covariates;

2 cluster-specific sampling model.

→ next topic..
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3. Classification

Categorical xi : different subpopulations of interest

Aim: classify a new patient as xn+1 = x ∈ {0, 1}
Model:

yi | xi = 1 ∼ Fx and {Fx ; x = 0, 1} ∼ DDP

as before (GP simplifies to bivariate normal for x ∈ {0, 1}),
but . . .

Simple augmentation: with

p(xi = 1) = π

allows the desired . . .

Classification: p(xn+1 = 1 | data) – that’s all! (de la Cruz et al., 2007
ApplStat)
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Example 3: Pregnancy classification

De la Cruz-Mesia et al. (2007, ApplStat)

Data: hormone data yij for n = 173
pregnant women,
repeat mmt at times tij ,
j = 1, . . . , ni

Subpopulations: xi = 0, normal
pregnancies, n0 = 124 women
xi = 1, abnormal, n1 = 49

20 40 60 80
1

2
3

4
5

DAY

Y

Sampling model: yij | xi = x , . . . ∼ N(mij , σ
2
x)

with mij = θi
/{

1 + e−(tij−β1x )/β2x
}
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2. Clustering

Recall: DP Mixtures: convolution of discrete F =
∑

phδmh
with

(continuous) kernel, e.g., normal

G (y) =

∫
N(y | θ, σ2) dF (θ), F ∼ DP

=
∞∑
h=1

phN(y | mh, σ)

continous G (·) (and hyperpar σ2)

Latent vars: write
∫
. . . dF (θ) as hierarchical model

yi | θi ∼ N(θi , σ
2), i = 1, . . . , n

θi | F ∼ F

Notation: discrete F ⇒ K ≤ n unique θi ’s = {φ?1, . . . , φ?K}.
Latent indicators: zi = j iff θi = φ?j match θi with φ?j ’s.
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Random Partition Models

Product partition model (PPM): cohesion functions c(Sj) define similarity
of a cluster,

p(ρn) ∝
k∏

j=1

c(Sj).

Hartigan (1990 Comm Stat), Barry and Hartigan (1993 JASA)

Sampling model: conditional on partition ρn, assume exchangeability,

p(yn | ρ, φ?) =
k∏

j=1

∏
i∈Sj

p(yi | φ?j )

 (∗)

with cluster-specific parameters φ?j
Prior p(φ?j ): conjugate . . .
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Covariate-dependent PPM (PPMx)

M et al. (2011 JCGS), Quintana et al. (2015 ScandJS)

Random partition: to favor clusters of patients with similar covariates,

define g(x?j ) > 0 to characterize the similarity of {xi ; i ∈ Sj} with low
values for bad clusters:

p(ρn | xn) ∝
k∏

j=1

g(x?j ) · c(Sj)

Similarity function: easy computation with

g(x?j ) =

∫ ∏
i∈Sj

q(xi | ξ?j ) q(ξ?j )ddξ?j

using, e.g., q(xi | ξi ) = N(ξ?j ,V ) and q(ξ?j ) = N(. . .) for continuous xi ,
and similar conjugate choices for categorical, ordinal and counts.
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Example

Example 4: Survival regression with PPMx

M, Quintana & Rosner (2011 JCGS) analyze data from a study (CALGB
9082) of breast cancer patients.

Treatment: high dose (A) versus low dose (B) chemotherapy

Data: 765 patients randomized to A vs. B.

Response: time until progression or death

Covariates: Categorical: dose (A vs. B), menopausal status, estrogen
use
Continuous: age, initial tumor size,
Count: number of positive lymph nodes

Model: PPMx, with cluster-specific normal sampling
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BNP regression: use the PPMx for BNP regression; allowing regression
with variable dimension covariate vector!
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Bayesian Subgroup analysis

Subroup analysis problem: inference on exceptions from overall conclusion,
typically for a clinical study, for

a “benefitting population”,

vs.

eligible population of the trial

Approaches :

Treatment/cov interaction: Dixon and Simon (1991 Bmcs), Jones
et al. (2011 ClinTrials)
Tree based methods: Foster, Taylor & Ruberg (2011 StatMed)
Model selection: Berger, Wang and Shen (2014, J Biopharm
Stat), Sivaganesan et al. (2011 StatMed)
Decision problem: next slides...
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Decision Problem

Data: response yi , covariates xi = (xi1, . . . , xip).

Actions: Report a subgroup of patients who most benefit from the
experimental therapy:

a = (I , x?),

Covariates: I ⊂ {1, . . . , p}
Levels: x? = (x?j , j ∈ I ),

(possibly restrict continuous x?j to fixed thresholds)

Decision problem: separate inference (predicting yn+1), with flexible model
vs.

decision (report subpopulation), parsimoniously

no need for multiplicity control
arbitrary prob model
disentagle stat significance vs. clinical relevance
allow for variable # covs.
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Utility: we favor a subpopulation with difference (relative to the overall
population) in trt effect, large size and parsimonious description with
few covariates.

Event time: e.g., for an yi = PFS (event time), this could be
based on log hazard ratio

u(a, θ) = (LR(a, θ)− β) · n(a)α

(|I |+ 1)γ
(1)

where θ are parameters that index the sampling model.
Continous outcome: e.g., % tumor shrinkage, this could be based
on predictive average treatment effect (PATE),
averaged over xi and already averaged w.r.t. p(θ | data).

U(a) =


{

PATESS(a)− β
}
· |n(a)+1|α(
|I |+1

)γ if a 6= H0

u0 if a = H0,

where H0,H1 are special actions,
with β > 0 a fixed clinically decided threshold and n(a) is the size of
the subpopulation.
θ indexes the sampling model (any model for p(y | x , θ))
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Bayes rule: Report a? = arg maxa
∫
u(a, θ) dp(θ | data)

Alternative utility: Foster, Taylor & Ruberg (2011, StatMed) use

Q(A) = enhanced treatment effect − average trt effect

and sensitivity and specificity to evaluate a reported subpopulation A.

Model: Decicsion problem and solution meaningful for any model.
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3. Probability Model

Flexible BNP model. The BNP model “is always right.”

Event time: for example, PPMx for the event time

Continuous outcome: e.g., DDP, BART
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Example 5: Phase III Study of NSCL Patients

Morita & M, 2017 Bmcs

Patients: advanced non-small cell lung cancer, n = 267

Treatment: carboplatin (N) (n0 = 130) vs. paclitaxel + carboplatin (C)
(n1 = 137).

Baseline covariates: pharmacologically relevant gene expressions, including
16 mRNA (mR1 - mR16) and 1 protein (Pn1) expressiaon levels
(p = 17).

Outcome: yi =maxTS% (max tumor size shrinkage from baseline)
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Results
Implement subgroup analysis for the phase III NSCL trial,
restricting subgroups to |I | ≤ 2 covariates.

Figure 4.  
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Example 6: A basket trial design for targeted therapies

Xu et al. (2018 Biometrical J)

Subgroup analysis with a purpose.

IMPACT II: patients across different cancers. Based on molecular
alterations patients are eligible for certain targeted therapies (TT)

Subgroup analysis: find subgroup of tumor/mutation pairs who most
benefit from TT
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Selecting the subpopulations

Based on a flexible probability model: PPMx

Utility function: u(a, . . .) (1) for event time, PFS
Report the subpopoulations with largest expected utility
Adaptive treatment allocation
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Simulation

6 scenarios: overall treatment effect (trt);
interaction z ×mutation× tumor,

z ∈ {0, 1}, mutation ∈ {BRAF, PIK3CA, PTEN},
tumors ∈ {BRCA, Lung, Ovary}.

trt Interactions (coefficient)
H0 0 none

H1 0.4 none

3 0 BRAF*Lung*z (0.4)

4 0 PIK3CA*BRCA*z (0.3), BRAF*Lung*z (0.3)
PTEN*Lung*z(0.4)

5 0 PIK3CA*BRCA*z (0.3), BRAF*Ovary*z (0.4)
BRAF*Lung*z(0.3)

6 0 BRAF*BRCA(0.4), BRAF*Ovary*z (0.3),
BRAF*Lung*z(0.4)
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Summary

Definition: BNP = prob models for infinite dim parameters.

(=CRM=ind.incr)

normalize

F=1−exp(−CRM)

NGaP

Levy proc

BePBP

NTR

BeSt

SSM

Gibbs−type

NIGP

stick−breaking

PY

DP

PT DDP

NRMI

IBP
P.U

PPM

Flexible models for full probabilistic description of all uncertainties

Computation intensive; nonsense in – rubbish out :-)
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