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A Motivating Example

SMART to evaluate meal replacement for adolescent obesity
reported by Berkowitz et al. (2010).

I Self-selected meal plans (CD, control) versus meal
replacement (MR, active)

I 1:1 randomization at baseline

I 1:1 re-randomization of MR arm at 4 months to continue MR
or switch to CD through 12 months

I Three regimes: MR+MR, MR+CD, CD+CD

I Outcome measures: BMI at 4 and 12 months

I Covariates: sex, race, parent BMI, baseline BMI, month 4 BMI

Aim: To identify a personalized dietary strategy that will minimize
expected 12 month BMI



Dynamic Treatment Regime

Sequential decisions can be formalized as a dynamic treatment
regime (DTR).

A DTR is a set of decision rules, one for each stage, that stipulate
which treatment to assign (or dietary action to take) based on the
patient’s history at that stage.

Prior to the seminal papers by Murphy (2003) and Robins (2004),
there was a dearth of statistical methods for evaluating DTRs.

In recent years, many approaches for defining, estimating and
optimizing DTRs have been (and are still being) proposed.



Proposed Approach

The proposed approach bridges the gap between Bayesian
inference and Q-learning (Watkins, 1989; Moodie et al., 2007).

I Provide another avenue for the use of hierarchical Bayesian
modeling to optimize DTRs

I Attenuate inferential difficulties encountered by Q-learning
and related methods



Some Notation

In the motivating setting we observe:

O1 → A1 → O2
A1=MR→ A2 → Y

I O1 = sex, race, parent’s BMI, baseline BMI

I A1 = CD or MR

I O2 = month 4 BMI

I for A1 = MR, A2 = continue MR or switch to CD

I Y = month 12 BMI

where the sample data consists of n independent observations



Dynamic Treatment Regime

Let Hk denote a patient’s history at stage k, e.g.,

I H2 = (O1, A1, O2)

I H1 = O1

Because Hk is observable at stage k, it can be used to select Ak.

A two-stage dynamic treatment regime (DTR) consists of two
decision rules

dk : Hk → Ak, k = 1, 2

i.e., a person with history Hk gets Ak at stage k



Optimal Dynamic Treatment Regime

Assuming the aim is to maximize the expected payoff, following
Bellman (1957), the optimal two-stage DTR is

dopt2 (H2) = arg max
a2∈A2

E [Y | H2, A2 = a2]

dopt1 (H1) = arg max
a1∈A1

E
[
E
[
Y
∣∣∣ H2(a1), A2 = dopt2 (H2(a1))

] ∣∣∣ H1, A1 = a1
]

Notice that dopt1 depends on dopt2 , but not conversely.

I Motivates backward induction, i.e., identify dopt2 then dopt1



Q-Learning

In our example, additive Q-learning is implemented as follows:

Let Ak = −1 for CD and Ak = 1 for MR:

1. For all i : a1,i = 1, assume

yi = x
′
2,0(h2,i)β2,0 + a2,i{x′

2,1(h2,i)β2,1}+ ε2,i

and estimate β2 = (β2,0,β2,1)

2. ỹi =

{
x′
2,0(h2,i)β̂2,0 + |x′

2,1(h2,i)β̂2,1|, a1,i = 1

yi, a1,i = −1
3. For all i, assume

ỹi = x
′
1,0(h1,i)β1,0 + a1,i{x′

1,1(h1,i)β1,1}+ ε1,i

and estimate β1 = (β1,0,β1,1)

The estimated optimal DTR consists of the rules:

d̂optk (hk) = sign{x′
k,1(hk)β̂k,1}, k = 1, 2



Q-Learning Limitations

Estimating the sampling distribution of β̂1 is difficult due to the
dependence of ỹ on |x′

2,1β̂2,1| when x′
2,1(h2)β̂2,1 = 0 for some h2,

i.e., stage 2 intervention has no effect for some people (Moodie et
al., 2012).

Correctly specifying the interaction between A1 and O1 in the
stage 2 model is critical.

The support of ỹ and y do not match when y is a binary,
multinomial, or count variable making implementation with gams
difficult.



Proposed Approach

Our proposed approach relies on potential outcomes:

I Yi(a1, a2) = i-th subject’s month 12 BMI under (a1, a2).

I H2,i(a1) = i-th subject’s month 4 history under action a1.

Requires one Bayesian regression model per stage in reverse order:

1. Stage 2 regression model for all i : a1,i = 1
I Response: Yi(a1,i, a2,i) = y2,i
I Covariates: H2,i(a1,i) = h2,i, a2,i
I Parameter: θ2

2. Stage 1 regression model for all i
I Response: Yi(a1,i, a

opt
2,i ) where aopt2,i = dopt2 (h2,i)

I Covariates: h1,i, a1,i
I Parameter: θ1



Stage 2 Posterior Distribution an Its Uses

Sampling from the posterior for θ2 is accomplished in the usual
manner

Induces posterior samples for dopt2 (H2) and thus for

aopt2 = {aopt2,i : a1,i = 1, i = 1 . . . , n}

I For aopt2,i = a2,i, the stage 1 response is yi = Yi(a1,i, a2,i) and
thus observed.

I For aopt2,i 6= a2,i, the stage 1 response is missing.

Given aopt2 , upon assuming a relationship between yi and
Yi(a1,i, a

opt
2,i ) such as additive local rank preservation, we can

determine the full conditional posterior predictive distribution for
{Yi(a1,i, aopt2,i ) : a

opt
2,i 6= a2,i, a1,i = 1, i = 1 . . . , n}.



Stage 1 Posterior Distribution

Sampling from the posterior distribution for θ1 is accomplished
using Bayesian data augmentation

1. Draw θ2 for its posterior distribution and determine aopt2

2. For a2,i = aopt2,i , set yopt2,i = y2,i, whereas for a2,i 6= aopt2,i

I Draw {yopt2,i : aopt2,i 6= a2,i, a1,i = 1, i = 1 . . . , n} from its full
conditional posterior predictive distribution

3. Draw θ1 from its full conditional posterior distribution

Iterate the above steps to sample from the stage 1 posterior
distribution.



Motivating Example Data Analysis

Implemented the proposed approach using Bayesian Additive
Regression Trees (BART)

BART assumes a nonparametric mean function, and thus can
identify higher-order interactions and non-linear associations.

Y =

m∑
j=1

g(x;Tj ,Mj) + ε, ε ∼ Normal(0, σ2),

where g(x;Tj ,Mj) is a regression tree with splitting rules (Tj) and
terminal values (Mj).

The mean of Y given x is the sum of the terminal values
associated with x in the m trees.

We use the prior specification suggested by Chipman et al. (2010)
for (T1,M1), . . . , (Tm,Mm) and σ, and carry out inference using
the R package BayesTree.



Stage 2 Treatment Effects
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Stage 2 Posterior Optimality Probabilities
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Stage 1 Treatment Effects
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Stage 1 Posterior Optimality Probabilities
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Non-regularity Simulation Study

O1 → A1 → O2 → A2 → Y with Ok, Ak ∈ {−1, 1} and Y ∈ R.

Following Laber et al. (2014) and Chakraborty et al. (2013), we
generated data as follows:

Prob(O1 = 1) = 0.5

Prob(A1 = 1 |O1) = 0.5

Prob(O2 = 1 |A1) = expit{δ1O1 + δ2A1}
Prob(A2 = 1 |O2) = 0.5

Y = α0 + α1O1 + α2A1 + α3O1 ×A1 + α4O2 +

α5A2 + α6A2 ×O1 + α7A2 ×A1 + α8A2 ×O2 + ε,

where ε ∼ Normal(0, 1), and α and δ are specified in each case to
exhibit varying degrees of non-regularity.



Continuous Payoff Implementations

To isolate the differences between the proposed approach and
Q-learning, we implemented each method using the same linear
stage 1 and stage 2 models.

I m-out-of-n bootstrap for variance estimation of stage 1 model
parameters in Q-learning (Chakraborty et al., 2013)

I BIG sampler with p(βk, σk) ∝ 1/σ2k
I We assume Yi(a1,i, a

opt
2,i ) and Yi have the same residual during

imputation

Because direct sampling is feasible, the proposed method is 7 times
faster than Q-learning method (when based on 2000 posterior
samples vs 2000 bootstrap samples).



Partial Results for Stage 1 (1000 datasets with n = 300)

Proposed Approach
Case Type POA Bias RMSE W95 C95

1 NR 1.000 0.062 0.135 0.611 0.968
2 NNR 1.000 0.052 0.131 0.611 0.972
6 R 0.999 -0.010 0.143 0.600 0.949
B NR 0.984 0.030 0.141 0.606 0.957
C NNR 0.982 0.026 0.139 0.606 0.961

Q-Learning
Case Type POA Bias RMSE W95 C95

1 NR 1.000 0.089 0.148 0.603 0.963
2 NNR 1.000 0.080 0.143 0.603 0.965
6 R 1.000 -0.003 0.141 0.609 0.950
B NR 0.979 0.044 0.147 0.608 0.955
C NNR 0.975 0.040 0.144 0.609 0.957



Other Settings

Real-valued interim and subsequent payoffs:
O1 → A1 → Y1 → A2 → Y2.

I Proposed approach based on Bayesian additive regression
trees (Chipman et al., 2010)

I Q-learning based on generalized additive models

Binary payoff, initial responders do not continue:

O1 → A1 → Y1
Y1=0→ O2 → A2 → Y2.

I Subset of non-responders for stage 2 estimation

I Proposed approach based on probit BART

I ỹ ∈ (0, 1), so Q-learning stage 1 estimation is based on a
quasi-binomial regression model



Partial Results: Continuous Y1 and Y2

Linear associations (Stage 1)

Method POA Bias RMSE W95 C95

BML-GLM 0.943 0.000 0.181 0.743 0.951
QL-GLM 0.944 0.010 0.180 0.780 0.957

BML-BART 0.932 -0.039 0.283 1.484 0.988
QL-GAM 0.929 0.014 0.220 1.301 0.974

Nonlinear associations (Stage 1)

Method POA Bias RMSE W95 C95

BML-GLM 0.987 -0.333 0.417 0.354 0.319
QL-GLM 0.987 -0.320 0.406 0.366 0.307

BML-BART 0.989 -0.032 0.114 0.558 0.978
QL-GAM 0.992 -0.011 0.092 0.380 0.924

(Based on 1000 datasets with n = 300)



Partial Results: Binary Payoff

Linear associations (Stage 1)

Method POA Bias RMSE W95 C95

BML-GLM 0.858 0.001 0.050 0.197 0.933
QL-GLM 0.861 0.006 0.049 0.181 0.853

BML-BART 0.861 -0.010 0.056 0.315 0.993
QL-GAM 0.821 0.012 0.069 – –

Nonlinear associations (Stage 1)

Method POA Bias RMSE W95 C95

BML-GLM 0.931 -0.084 0.105 0.267 0.788
QL-GLM 0.930 -0.075 0.097 0.239 0.674

BML-BART 0.924 -0.050 0.085 0.433 0.990
QL-GAM 0.891 -0.002 0.079 – –

(Based on 1000 datasets with n = 300)



Conclusion

The proposed approach is a general framework that bridges the
gap between Bayesian inference and Q-learning.

I Multiply imputes potential subsequent payoff under optimal
actions at subsequent stages, as opposed to using a plug-in
estimator.

BIG Sampler uses data augmentation to facilitate sampling from
the stage 1 posterior.

Stage-wise Bayesian regression modeling for optimizing DTRs

I Minimizes modeling requirements

I Parametric models result in interpretable rules and parameters

I Characterizes uncertainty well in non-regular settings



Comments/Questions?

Thank You! e-mail: murra484@umn.edu
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