A Bayesian Imputation Approach to Optimizing Dynamic Treatment Regimes

Thomas A. Murray

Division of Biostatistics University of Minnesota

MBI Bayesian Causal Inference Workshop June 3, 2019

Joint work with Ying Yuan and Peter Thall Department of Biostatistics, The University of Texas MD Anderson Cancer Center

YO A REPART AND A REPAIR

SMART to evaluate meal replacement for adolescent obesity reported by Berkowitz et al. (2010).

- \triangleright Self-selected meal plans (CD, control) versus meal replacement (MR, active)
- \blacktriangleright 1:1 randomization at baseline
- \triangleright 1:1 re-randomization of MR arm at 4 months to continue MR or switch to CD through 12 months
- \triangleright Three regimes: MR+MR, MR+CD, CD+CD
- \triangleright Outcome measures: BMI at 4 and 12 months
- \triangleright Covariates: sex, race, parent BMI, baseline BMI, month 4 BMI

Aim: To identify a personalized dietary strategy that will minimize expected 12 month BMI

KORKARA REPASA DA VOCA

Sequential decisions can be formalized as a dynamic treatment regime (DTR).

A DTR is a set of decision rules, one for each stage, that stipulate which treatment to assign (or dietary action to take) based on the patient's history at that stage.

Prior to the seminal papers by Murphy (2003) and Robins (2004), there was a dearth of statistical methods for evaluating DTRs.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

In recent years, many approaches for defining, estimating and optimizing DTRs have been (and are still being) proposed.

The proposed approach bridges the gap between Bayesian inference and Q-learning (Watkins, 1989; Moodie et al., 2007).

- \triangleright Provide another avenue for the use of hierarchical Bayesian modeling to optimize DTRs
- \triangleright Attenuate inferential difficulties encountered by Q-learning and related methods

KORKARA REPASA DA VOCA

In the motivating setting we observe:

$$
O_1 \to A_1 \to O_2 \overset{A_1 = MR}{\to} A_2 \to Y
$$

- \triangleright O_1 = sex, race, parent's BMI, baseline BMI
- \blacktriangleright A_1 = CD or MR
- O_2 = month 4 BMI
- \triangleright for $A_1 = MR$, $A_2 =$ continue MR or switch to CD
- \blacktriangleright Y = month 12 BMI

where the sample data consists of n independent observations

KEL K@ K K E K LE K LE 1990

Let H_k denote a patient's history at stage k, e.g.,

$$
\blacktriangleright H_2 = (\boldsymbol{O}_1, A_1, O_2)
$$

$$
\blacktriangleright H_1 = \mathbf{O}_1
$$

Because H_k is observable at stage k, it can be used to select A_k .

A two-stage dynamic treatment regime (DTR) consists of two decision rules

$$
d_k: \mathcal{H}_k \to \mathcal{A}_k, \ k = 1, 2
$$

KORKARA REPASA DA VOCA

i.e., a person with history H_k gets A_k at stage k

Assuming the aim is to maximize the expected payoff, following Bellman (1957), the optimal two-stage DTR is

$$
d_2^{opt}(H_2) = \arg \max_{a_2 \in A_2} E[Y | H_2, A_2 = a_2]
$$

$$
d_1^{opt}(H_1) = \arg \max_{a_1 \in A_1} E\left[E\left[Y \mid H_2(a_1), A_2 = d_2^{opt}(H_2(a_1))\right] | H_1, A_1 = a_1\right]
$$

Notice that d_1^{opt} $_1^{opt}$ depends on d_2^{opt} 2^{opt} , but not conversely.

 \blacktriangleright Motivates backward induction, i.e., identify d^{opt}_2 $_2^{opt}$ then d_1^{opt} 1

KELK KØLK ELK ELK ELK POLOK

Q-Learning

In our example, additive Q-learning is implemented as follows:

Let
$$
A_k = -1
$$
 for CD and $A_k = 1$ for MR:
\n1. For all $i : a_{1,i} = 1$, assume
\n $y_i = x'_{2,0}(h_{2,i})\beta_{2,0} + a_{2,i}\{x'_{2,1}(h_{2,i})\beta_{2,1}\} + \epsilon_{2,i}$
\nand estimate $\beta_2 = (\beta_{2,0}, \beta_{2,1})$
\n2. $\tilde{y}_i = \begin{cases} x'_{2,0}(h_{2,i})\hat{\beta}_{2,0} + |x'_{2,1}(h_{2,i})\hat{\beta}_{2,1}|, & a_{1,i} = 1 \\ y_i, & a_{1,i} = -1 \end{cases}$
\n3. For all i , assume

$$
\widetilde{y}_i = \pmb{x}^{\prime}_{1,0}(h_{1,i})\pmb{\beta}_{1,0} + a_{1,i}\{\pmb{x}^{\prime}_{1,1}(h_{1,i})\pmb{\beta}_{1,1}\} + \epsilon_{1,i}
$$
 and estimate $\pmb{\beta}_1 = (\pmb{\beta}_{1,0},\pmb{\beta}_{1,1})$

The estimated optimal DTR consists of the rules:

$$
\widehat{d}_{k}^{opt}(h_{k}) = \text{sign}\{\boldsymbol{x}_{k,1}^{\prime}(h_{k})\widehat{\boldsymbol{\beta}}_{k,1}\}, \ k = 1, 2
$$

Estimating the sampling distribution of $\widehat{\beta}_1$ is difficult due to the dependence of \widetilde{y} on $|x'_{2,1}\widehat{\beta}_{2,1}|$ when $x'_{2,1}(h_2)\widehat{\beta}_{2,1} = 0$ for some h_2 ,
i.e. stage 2 intervention has no effect for some people (Moodie of i.e., stage 2 intervention has no effect for some people (Moodie et al., 2012).

Correctly specifying the interaction between A_1 and O_1 in the stage 2 model is critical.

The support of \tilde{y} and y do not match when y is a binary, multinomial, or count variable making implementation with gams difficult.

Our proposed approach relies on potential outcomes:

- $Y_i(a_1, a_2) = i$ -th subject's month 12 BMI under (a_1, a_2) .
- $H_{2,i}(a_1) = i$ -th subject's month 4 history under action a_1 .

Requires one Bayesian regression model per stage in reverse order:

- 1. Stage 2 regression model for all $i : a_{1,i} = 1$
	- **•** Response: $Y_i(a_{1,i}, a_{2,i}) = y_{2,i}$
	- ▶ Covariates: $H_{2,i}(a_{1,i}) = h_{2,i}, a_{2,i}$
	- **Parameter:** θ_2
- 2. Stage 1 regression model for all i
	- ► Response: $Y_i(a_{1,i}, a_{2,i}^{opt})$ where $a_{2,i}^{opt} = d_2^{opt}(h_{2,i})$

KOD KAD KED KED E VOOR

- \blacktriangleright Covariates: $h_{1,i}, a_{1,i}$
- **Parameter:** θ_1

Stage 2 Posterior Distribution an Its Uses

Sampling from the posterior for θ_2 is accomplished in the usual manner

Induces posterior samples for d_2^{opt} $_2^{opt}(H_2)$ and thus for

$$
\bm{a}^{opt}_2 = \{a^{opt}_{2,i}: a_{1,i} = 1, i = 1 \ldots, n\}
$$

- \blacktriangleright For $a_{2,i}^{opt}=a_{2,i}$, the stage 1 response is $y_i=Y_i(a_{1,i},a_{2,i})$ and thus observed.
- \blacktriangleright For $a^{opt}_{2,i} \neq a_{2,i}$, the stage 1 response is missing.

Given \bm{a}^{opt}_2 $2\over 2$, upon assuming a relationship between y_i and $Y_i(a_{1,i},\tilde{a}_{2,i}^{opt})$ such as additive local rank preservation, we can determine the full conditional posterior predictive distribution for $\{Y_i(a_{1,i}, a_{2,i}^{opt}) : a_{2,i}^{opt} \neq a_{2,i}, a_{1,i} = 1, i = 1, \ldots, n\}.$

Sampling from the posterior distribution for θ_1 is accomplished using Bayesian data augmentation

1. Draw $\bm{\theta}_2$ for its posterior distribution and determine \bm{a}^{opt}_2 2

2. For
$$
a_{2,i} = a_{2,i}^{opt}
$$
, set $y_{2,i}^{opt} = y_{2,i}$, whereas for $a_{2,i} \neq a_{2,i}^{opt}$

 \blacktriangleright Draw $\{y^{opt}_{2,i}: a^{opt}_{2,i} \neq a_{2,i}, a_{1,i} = 1, i = 1 \ldots, n\}$ from its full conditional posterior predictive distribution

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

3. Draw θ_1 from its full conditional posterior distribution

Iterate the above steps to sample from the stage 1 posterior distribution.

Motivating Example Data Analysis

Implemented the proposed approach using Bayesian Additive Regression Trees (BART)

BART assumes a nonparametric mean function, and thus can identify higher-order interactions and non-linear associations.

$$
Y = \sum_{j=1}^{m} g(x; T_j, M_j) + \epsilon, \quad \epsilon \sim \text{Normal}(0, \sigma^2),
$$

where $g(x; T_i, M_i)$ is a regression tree with splitting rules (T_i) and terminal values (M_i) .

The mean of Y given x is the sum of the terminal values associated with x in the m trees.

We use the prior specification suggested by Chipman et al. (2010) for $(T_1, M_1), \ldots, (T_m, M_m)$ and σ , and carry out inference using the R package BayesTree.

Stage 2 Treatment Effects

 $2Q$ ŧ ∍

(□) (_□)

 \sim

Stage 2 Posterior Optimality Probabilities

 $2Q$ 4 伊 ト È ŧ ŧ \sim ϵ \mathcal{A} n.

 \leftarrow

 $2Q$

ŧ

Stage 1 Posterior Optimality Probabilities

K ロ ト K 倒 ト K 差 \geq È $2Q$ \mathbf{h} \sim

$$
O_1 \to A_1 \to O_2 \to A_2 \to Y \text{ with } O_k, A_k \in \{-1,1\} \text{ and } Y \in \mathbb{R}.
$$

Following Laber et al. (2014) and Chakraborty et al. (2013), we generated data as follows:

Prob(O₁ = 1) = 0.5
\nProb(A₁ = 1 | O₁) = 0.5
\nProb(O₂ = 1 |
$$
\overline{A}
$$
₁) = expit{ δ ₁O₁ + δ₂A₁}
\nProb(A₂ = 1 | \overline{O} ₂) = 0.5
\nY = α₀ + α₁O₁ + α₂A₁ + α₃O₁ × A₁ + α₄O₂ +
\nα₅A₂ + α₆A₂ × O₁ + α₇A₂ × A₁ + α₈A₂ × O₂ + ϵ ,

where $\epsilon \sim \text{Normal}(0, 1)$, and α and δ are specified in each case to exhibit varying degrees of non-regularity.

KEIKK@IKKEIKKEIK E 1990

To isolate the differences between the proposed approach and Q-learning, we implemented each method using the same linear stage 1 and stage 2 models.

- \triangleright m-out-of-n bootstrap for variance estimation of stage 1 model parameters in Q-learning (Chakraborty et al., 2013)
- ► BIG sampler with $p(\boldsymbol{\beta}_k, \sigma_k) \propto 1/\sigma_k^2$
- \blacktriangleright We assume $Y_i(a_{1,i}, a^{opt}_{2,i})$ and Y_i have the same residual during imputation

Because direct sampling is feasible, the proposed method is 7 times faster than Q-learning method (when based on 2000 posterior samples vs 2000 bootstrap samples).

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

Proposed Approach

Real-valued interim and subsequent payoffs:

 $O_1 \rightarrow A_1 \rightarrow Y_1 \rightarrow A_2 \rightarrow Y_2$.

- \triangleright Proposed approach based on Bayesian additive regression trees (Chipman et al., 2010)
- \triangleright Q-learning based on generalized additive models

Binary payoff, initial responders do not continue:

$$
O_1 \to A_1 \to Y_1 \overset{Y_1=0}{\to} O_2 \to A_2 \to Y_2.
$$

- \triangleright Subset of non-responders for stage 2 estimation
- ► Proposed approach based on probit BART
- $\bullet \ \widetilde{y} \in (0,1)$, so Q-learning stage 1 estimation is based on a quasi-binomial regression model

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

イロト イ団ト イミト イミト ニミー りんぺ

Linear associations (Stage 1)

(Based on 1000 datasets with $n = 300$)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Linear associations (Stage 1)

(Based on 1000 datasets with $n = 300$)

The proposed approach is a general framework that bridges the gap between Bayesian inference and Q-learning.

 \triangleright Multiply imputes potential subsequent payoff under optimal actions at subsequent stages, as opposed to using a plug-in estimator.

BIG Sampler uses data augmentation to facilitate sampling from the stage 1 posterior.

Stage-wise Bayesian regression modeling for optimizing DTRs

- \blacktriangleright Minimizes modeling requirements
- \triangleright Parametric models result in interpretable rules and parameters
- \triangleright Characterizes uncertainty well in non-regular settings

Comments/Questions?

Thank You! e-mail: murra484@umn.edu

Selected References

- ▶ Murray T.A., Yuan Y., Thall P.F. (2017) "A Bayesian Machine Learning Approach for Optimizing Dynamic Treatment Regimes." JASA In Press.
- \triangleright Berkowitz et al. (2010). "Meal replacements in the treatment of adolescent obesity: A randomized controlled trial." Obesity 19(6):11931199.
- \blacktriangleright Murphy, S.A. (2003) "Optimal dynamic treatment regimes." JRSS-B 65(2):331-355.
- ▶ Chakraborty, B., E.B. Laber, and Y. Zhao (2013) "Inference for optimal dynamic treatment regimes using an adaptive m-out-of-n bootstrap scheme." Biometrics 69(3):714-723.
- ▶ Watkins, C. (1989) "Learning from delayed rewards." PhD Thesis, University of Cambridge, England.
- ▶ Moodie, E.E.M., T.S. Richardson, and D.A. Stephens (2007) "Demystifying optimal dynamic treatment regimes." Biometrics 63(2):447-455.KEL K@ K K E K LE K LE 1990