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Why sensitivity analysis?

> Unless we have perfectly executed randomized experiment, causal
inference is based on some unverifiable assumptions.

> In observational studies, the most commonly used assumption is
ignorability or no unmeasured confounding:

AL Y(0),Y(1)]X.

We can only say this assumption is “plausible”.

» Sensitivity analysis asks: what if this assumption does not hold?
Does our qualitative conclusion still hold?

» This question appears in many settings:

1. Confounded observational studies.
2. Survey sampling with missing not at random (MNAR).
3. Longitudinal study with non-ignorable dropout.

> In general, this means that the target parameter (e.g. average
treatment effect) is only partially identified.
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Overview: Bootstrapping sensitivity analysis

Point-identified parameter: Efron’s bootstrap

Bootstrap
Point estimator Confidence interval

Partially identified parameter: An analogy

Optimization Percentile Bootstrap ~ Minimax inequality
Extrema estimator Confidence interval

Rest of the talk

Apply this idea to IPW estimators in a marginal sensitivity model.
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Some existing sensitivity models

Generally, we need to specify how unconfoundedness is violated.
1. Y models: Consider a specific difference between the conditional
distribution Y'(a)| X, A and Y(a)| X.
» Commonly called “pattern mixture models”.
> Robins (1999, 2002); Birmingham et al. (2003); Vansteelandt et al.
(2006); Daniels and Hogan (2008).
2. A models: Consider a specific difference between the conditional
distribution A| X, Y(a) and A| X.
» Commonly called “selection models”.
> Scharfstein et al. (1999); Gilbert et al. (2003).

3. Simultaneous models: Consider a range of A models and/or Y
models and report the “worst case” result.

» Cornfield et al. (1959); Rosenbaum (2002); Ding and VanderWeele
(2016).

Our sensitivity model—
A hybrid of 2nd and 3rd, similar to Rosenbaum'’s.
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Rosenbaum’s sensitivity model

> Imagine there is an unobserved confounder U that “summarizes” all
confounding, so A L Y(0), Y(1)| X, U.

> Let eo(x,u) =Po(A=1X =x,U = u).
Rosenbaum’s sensitivity model
1
R(T) = {e(x,u): = < OR(e(x, un), e(x, 1)) < T,Vx € X, 1,2,
where OR(p1, p2) := [p1/(1 — p1)]/[p2/(1 — p2)] is the odds ratio.
» Rosenbaum’s question: can we reject the sharp null hypothesis
Y (0) = Y(1) for every eo(x, u) € R(I")?

> Robins (2002): we don't need to assume the existence of U. Let
U = Y(1) when the goal is to estimate E[Y(1)].
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Our sensitivity model

> Let eg(x) = Po(A = 1|X = x) be the propensity score.

Marginal sensitivity models
M) = {elx,y) T < OR(e(x.y), er(x)) <T.vx € Xy},

» Compare this to Rosenbaum's model:
1
R(I) = {e(x, u): F < OR(e(x, 1), e(x,w)) <T,Vx € X, u1, U2}.

» Tan (2006) first considered this model, but he did not consider
statistical inference in finite sample.
> Relationship between the two models: M(VT) C R(I) € M(T).2

» For observational studies, we assume both
Po(A =1|X, Y(1)), Po(A =1|X, Y(0)) € M(I).

I The second part needs “compatibility”: e(x, y) marginalizes to ep(x).
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Parametric extension

> In practice, the propensity score eg(X) = Po(A = 1|X) is often
estimated by a parametric model.

Definition (Parametric marginal sensitivity models)

1
Mg, (N = {e(x,y) T < OR(e(x,y),es,(x)) <T,Vx € X,y}, where eg, (x)
is the best parametric approximation of eg(x).

This sensitivity model covers both
1. Model misspecification, that is, eg,(x) # ep(x); and
2. Missing not at random, that is, ey(x) # ep(x, y).
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Logistic representations

1. Rosenbaum’s sensitivity model:
logit(e(x, u)) = g(x) + vyu,

where 0 < U <1 and y=logl.
2. Marginal sensitivity model:

logit(e(h)(x,y)) = logit(eg(x)) + h(x, y),

where ||h||co = sup |h(x,y)| <. Due to this representation, we also
call it a marginal L..-sensitivity model.

3. Parametric marginal sensitivity model:
logit(e™(x,y)) = logit(eg, (x)) + h(x, y),

where || hllo = sup |h(x,y)] < 7.
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Confidence interval |

» For simplicity, consider the “missing data” problem where Y = Y/(1)
is only observed if A= 1.

» Observe i.i.d. samples (A;, X;, A;Y;), i=1,...,n.

» The estimand is o = Eo[Y], however it is only partially identified
under a simultaneous sensitivity model.

Goal 1 (Coverage of true parameter)
Construct a data-dependent interval [L, U] such that

Po(po € [L,U]) > 1—a

whenever (X, Y) =Po(A=1|X,Y) € M(I).
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Confidence interval Il

> The inverse probability weighting (IPW) identity:

Y1 = B[ ) " = o]

» Define

AY
) — gy | — 2
=5 [
» Partially identified region: {u(" : e e M(I)}.
Goal 2 (Coverage of partially identified region)
Construct a data-dependent interval [L, U] such that

]P’o({u”') e e M(T)} C[L, U]) >1-a.

» Imbens and Manski (2004) have discussed the difference between
these two Goals.
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An intuitive idea: “The Union Method”

» Suppose for any h, we have a confidence interval [L("), UM] such
that
lim inf Po(uM e (LM, UM]) >1 -«
n— o0

> Let L= inf L and U = sup UM, so [L, U] is the union interval.

lIAll Il Al

Theorem

1. [L, U] satisfies Goal 1 asymptotically.
2. Furthermore if the intervals are “congruent”: 3 o < o such that

limsup Po (' < L) <o/, limsupPo (™ > UM) <o — .
n—o0o n— oo

Then [L, U] satisfies Goal 2 asymptotically.
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Practical challenge: How to take the union?
> Suppose g(x) is an estimate of logit(ep(x)).
» For a specific difference h, we can estimate e(")(x, y) by

1
1 4+ eh(xy)—&(xy)"

eM(x,y) =

» This leads to an (stabilized) IPW estimate of x("):

n

1< A; i AY;
A(h): - I - I
: LZaW&nJ LZanWJ

i=1 i=1

» Under regularity conditions, the Z-estimation theory tells us
Vi (" = u®) 4 N0, (o)?)

5(h)
» Therefore we can use [L(", UM] = oM £ za 7_
[ ] =" F zg NG
» However, computing the union interval requires solving a
complicated optimization problem.
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Bootstrapping sensitivity analysis

Point-identified parameter: Efron’s bootstrap

Bootstrap
Point estimator Confidence interval

Partially identified parameter: An analogy

Optimization Percentile Bootstrap ~ Minimax inequality
Extrema estimator Confidence interval

A simple procedure for simultaneous sensitivity analysis
1. Generate B random resamples of the data. For each resample,
compute the extrema of IPW estimates under Mg, ().

2. Construct the confidence interval using L = Q, /> of the B minima
and U = @;_,/» of the B maxima.

Theorem
[L, U] achieves Goal 2 for Mg, (') asymptotically.
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Proof of the Theorem

Partially identified parameter: Three ideas

Optimization 1. Percentile Bootstrap 2. Minimax inequality
Extrema estimator Confidence interval

1. The sampling variability of ﬂ(h) can be captured by bootstrap. The
percentile bootstrap Cl is given by

s )00 ()]

2. Generalized minimax inequality:

Percentile Bootstrap Cl

Qs (ir;fﬁfﬁ) < inf Q4 @gh)) <supQrg (@p) < Qs (sipﬁw .

Union CI
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Computation

Partially identified parameter: Three ideas

3. Optimization Percentile Bootstrap ~ Minimax inequality
Extrema estimator Confidence interval

3. Computing extrema of A" is a linear fractional programming:
Let z; = eh(x"’y"), we just need to solve

Y AY (1 + Zl.efg(x,-))
YA (14 zemEX))
subject to z € [[,T], i=1,....n.

max or min

> This can be converted to a linear programming.
> Moreover, the solution z must have the same/opposite order as Y,
so the time complexity can be reduced to O(n) (optimal).
The role of Bootstrap
Comapred to the union method, the workflow is greatly simplified:
1. No need to derive 0" analytically (though we could).

2. No need to optimize (" (which is very challenging).
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Comparison with Rosenbaum'’s sensitivity analysis

Rosenbaum’s paradigm New bootstrap approach

Population

Sample Super-population

Design

Matching Weighting

Sensitivity model

M(VT) C R(T) € M(T)

Inference

Bounding p-value Cl for ATE/ATT

Effect modification

Constant effect Allow for heterogeneity

Extension

Can be applied to
missing data problems

Carefully developed for
observational studies
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Example

Fish consumption and blood mercury

» 873 controls: < 1 serving of fish per month.
> 234 treated: > 12 servings of fish per month.

» Covariates: gender, age, income (very imblanced), race, education,
ever smoked, # cigarettes.

Implementation details

» Rosenbaum’s method: 1-1 matching, Cl constructed by
Hodges-Lehmann (assuming causal effect is constant).

» Our method (percentile Bootstrap): stabilized IPW for ATT w/wo
augmentation by outcome linear regression.
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Results

> Recall that M(VT) C R(T) € M(T).

Figure: The solid error bars are the range of point estimates and the dashed error bars

Causal effect

44 -r
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r

— Matching
-~ SIPW (ATT)
= SAIPW (ATT)

(together with the solid bars) are the confidence intervals. The

circles/triangles/squares are the mid-points of the solid bars.

17/20



Discussion: The general sensitivity analysis problem

Optimization Percentile Bootstrap ~ Minimax inequality
Extrema estimator Confidence interval

The percentile bootstrap idea can be extended to the following problem:

max or min E[f(X, 6, h(X))],
subject to  ||A(X)|loo < 7,

where f is a functional of the observed data X, some finite-dimensional
nuisance parameter 6, and a sensitivity function h(X), as long as

> 0 is “estimable” given X and h;
» Bootstrap “works” for E,[f(X, 8, h(X))], given h.

The challenges...

1. How to solve the sample verision of the optimization problem?
2. Can we allow infinite-dimensional 67
3. Can we include additional constraints such as E[g(X, 6, h(X))] < 0?
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