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Why sensitivity analysis?

I Unless we have perfectly executed randomized experiment, causal
inference is based on some unverifiable assumptions.

I In observational studies, the most commonly used assumption is
ignorability or no unmeasured confounding:

A ⊥⊥ Y (0),Y (1)
∣∣X .

We can only say this assumption is “plausible”.

I Sensitivity analysis asks: what if this assumption does not hold?
Does our qualitative conclusion still hold?

I This question appears in many settings:

1. Confounded observational studies.
2. Survey sampling with missing not at random (MNAR).
3. Longitudinal study with non-ignorable dropout.

I In general, this means that the target parameter (e.g. average
treatment effect) is only partially identified.
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Overview: Bootstrapping sensitivity analysis

Point-identified parameter: Efron’s bootstrap

Bootstrap

Point estimator ============⇒ Confidence interval

Partially identified parameter: An analogy

Optimization Percentile Bootstrap Minimax inequality

Extrema estimator ============⇒ Confidence interval

Rest of the talk

Apply this idea to IPW estimators in a marginal sensitivity model.
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Some existing sensitivity models

Generally, we need to specify how unconfoundedness is violated.

1. Y models: Consider a specific difference between the conditional
distribution Y (a) |X ,A and Y (a) |X .

I Commonly called “pattern mixture models”.
I Robins (1999, 2002); Birmingham et al. (2003); Vansteelandt et al.

(2006); Daniels and Hogan (2008).

2. A models: Consider a specific difference between the conditional
distribution A |X ,Y (a) and A |X .

I Commonly called “selection models”.
I Scharfstein et al. (1999); Gilbert et al. (2003).

3. Simultaneous models: Consider a range of A models and/or Y
models and report the “worst case” result.

I Cornfield et al. (1959); Rosenbaum (2002); Ding and VanderWeele
(2016).

Our sensitivity model—
A hybrid of 2nd and 3rd, similar to Rosenbaum’s.
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Rosenbaum’s sensitivity model

I Imagine there is an unobserved confounder U that “summarizes” all
confounding, so A ⊥⊥ Y (0),Y (1) |X ,U.

I Let e0(x , u) = P0(A = 1|X = x ,U = u).

Rosenbaum’s sensitivity model

R(Γ) =
{
e(x , u) :

1

Γ
≤ OR(e(x , u1), e(x , u2)) ≤ Γ,∀x ∈ X , u1, u2

}
,

where OR(p1, p2) := [p1/(1− p1)]/[p2/(1− p2)] is the odds ratio.

I Rosenbaum’s question: can we reject the sharp null hypothesis
Y (0) ≡ Y (1) for every e0(x , u) ∈ R(Γ)?

I Robins (2002): we don’t need to assume the existence of U. Let
U = Y (1) when the goal is to estimate E[Y (1)].
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Our sensitivity model

I Let e0(x) = P0(A = 1|X = x) be the propensity score.

Marginal sensitivity models

M(Γ) =
{
e(x , y) :

1

Γ
≤ OR(e(x , y), e0(x)) ≤ Γ,∀x ∈ X , y

}
.

I Compare this to Rosenbaum’s model:

R(Γ) =
{
e(x , u) :

1

Γ
≤ OR(e(x , u1), e(x , u2)) ≤ Γ,∀x ∈ X , u1, u2

}
.

I Tan (2006) first considered this model, but he did not consider
statistical inference in finite sample.

I Relationship between the two models: M(
√

Γ) ⊆ R(Γ) ⊆M(Γ).1

I For observational studies, we assume both
P0(A = 1|X ,Y (1)), P0(A = 1|X ,Y (0)) ∈M(Γ).

1The second part needs “compatibility”: e(x, y) marginalizes to e0(x).
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Parametric extension

I In practice, the propensity score e0(X ) = P0(A = 1|X ) is often
estimated by a parametric model.

Definition (Parametric marginal sensitivity models)

Mβ0 (Γ) =
{
e(x , y) :

1

Γ
≤ OR(e(x , y), eβ0 (x)) ≤ Γ,∀x ∈ X , y

}
, where eβ0 (x)

is the best parametric approximation of e0(x).

This sensitivity model covers both

1. Model misspecification, that is, eβ0 (x) 6= e0(x); and

2. Missing not at random, that is, e0(x) 6= e0(x , y).
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Logistic representations

1. Rosenbaum’s sensitivity model:

logit(e(x , u)) = g(x) + γu,

where 0 ≤ U ≤ 1 and γ = log Γ.

2. Marginal sensitivity model:

logit(e(h)(x , y)) = logit(e0(x)) + h(x , y),

where ‖h‖∞ = sup |h(x , y)| ≤ γ. Due to this representation, we also
call it a marginal L∞-sensitivity model.

3. Parametric marginal sensitivity model:

logit(e(h)(x , y)) = logit(eβ0 (x)) + h(x , y),

where ‖h‖∞ = sup |h(x , y)| ≤ γ.
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Confidence interval I

I For simplicity, consider the “missing data” problem where Y = Y (1)
is only observed if A = 1.

I Observe i.i.d. samples (Ai ,Xi ,AiYi ), i = 1, . . . , n.

I The estimand is µ0 = E0[Y ], however it is only partially identified
under a simultaneous sensitivity model.

Goal 1 (Coverage of true parameter)
Construct a data-dependent interval [L,U] such that

P0

(
µ0 ∈ [L,U]

)
≥ 1− α

whenever e0(X ,Y ) = P0(A = 1|X ,Y ) ∈M(Γ).
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Confidence interval II

I The inverse probability weighting (IPW) identity:

E0[Y ] = E
[ AY

e0(X ,Y )

]
MAR
= E

[ AY

e0(X )

]
.

I Define

µ(h) = E0

[
AY

e(h)(X ,Y )

]
I Partially identified region: {µ(h) : e(h) ∈M(Γ)}.

Goal 2 (Coverage of partially identified region)
Construct a data-dependent interval [L,U] such that

P0

(
{µ(h) : e(h) ∈ M(Γ)} ⊆ [L,U]

)
≥ 1− α.

I Imbens and Manski (2004) have discussed the difference between
these two Goals.
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An intuitive idea: “The Union Method”

I Suppose for any h, we have a confidence interval [L(h),U(h)] such
that

lim inf
n→∞

P0(µ(h) ∈ [L(h),U(h)]) ≥ 1− α

I Let L = inf
‖h‖

L(h) and U = sup
‖h‖

U(h), so [L,U] is the union interval.

Theorem
1. [L,U] satisfies Goal 1 asymptotically.
2. Furthermore if the intervals are “congruent”: ∃ α′ < α such that

lim sup
n→∞

P0

(
µ(h) < L(h)) ≤ α′, lim sup

n→∞
P0

(
µ(h) > U(h)) ≤ α− α′.

Then [L,U] satisfies Goal 2 asymptotically.
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Practical challenge: How to take the union?
I Suppose ĝ(x) is an estimate of logit(e0(x)).

I For a specific difference h, we can estimate e(h)(x , y) by

ê(h)(x , y) =
1

1 + eh(x,y)−ĝ(x,y)
.

I This leads to an (stabilized) IPW estimate of µ(h):

µ̂(h) =

[
1

n

n∑
i=1

Ai

ê(h)(Xi ,Yi )

]−1[
1

n

n∑
i=1

AiYi

ê(h)(Xi ,Yi )

]
.

I Under regularity conditions, the Z-estimation theory tells us

√
n
(
µ̂(h) − µ(h)

)
d→ N(0, (σ(h))2)

I Therefore we can use [L(h),U(h)] = µ̂(h) ∓ zα
2
· σ̂

(h)

√
n

.

I However, computing the union interval requires solving a
complicated optimization problem.
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Bootstrapping sensitivity analysis

Point-identified parameter: Efron’s bootstrap

Bootstrap

Point estimator ============⇒ Confidence interval

Partially identified parameter: An analogy

Optimization Percentile Bootstrap Minimax inequality

Extrema estimator ============⇒ Confidence interval

A simple procedure for simultaneous sensitivity analysis

1. Generate B random resamples of the data. For each resample,
compute the extrema of IPW estimates under Mβ0 (Γ).

2. Construct the confidence interval using L = Qα/2 of the B minima
and U = Q1−α/2 of the B maxima.

Theorem
[L,U] achieves Goal 2 forMβ0 (Γ) asymptotically.
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Proof of the Theorem

Partially identified parameter: Three ideas

Optimization 1. Percentile Bootstrap 2. Minimax inequality

Extrema estimator ============⇒ Confidence interval

1. The sampling variability of µ̂(h) can be captured by bootstrap. The
percentile bootstrap CI is given by[

Qα
2

(
ˆ̂µ

(h)
b

)
,Q1−α

2

(
ˆ̂µ

(h)
b

)]
.

2. Generalized minimax inequality:

Percentile Bootstrap CI

Qα
2

(
inf
h

ˆ̂µ
(h)
b

)
≤ inf

h
Qα

2

(
ˆ̂µ

(h)
b

)
≤ sup

h
Q1−α

2

(
ˆ̂µ

(h)
b

)
Union CI

≤ Q1−α
2

(
sup
h

ˆ̂µ
(h)
b

)
.
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Computation

Partially identified parameter: Three ideas

3. Optimization Percentile Bootstrap Minimax inequality

Extrema estimator ============⇒ Confidence interval

3. Computing extrema of µ̂(h) is a linear fractional programming:
Let zi = eh(Xi ,Yi ), we just need to solve

max or min

∑n
i=1 AiYi

(
1 + zie

−ĝ(Xi )
)∑n

i=1 Ai

(
1 + zie−ĝ(Xi )

) ,

subject to zi ∈ [Γ−1, Γ], i = 1, . . . , n.

I This can be converted to a linear programming.
I Moreover, the solution z must have the same/opposite order as Y ,

so the time complexity can be reduced to O(n) (optimal).

The role of Bootstrap
Comapred to the union method, the workflow is greatly simplified:

1. No need to derive σ(h) analytically (though we could).

2. No need to optimize σ(h) (which is very challenging).
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Comparison with Rosenbaum’s sensitivity analysis

Rosenbaum’s paradigm New bootstrap approach

Population Sample Super-population

Design Matching Weighting

Sensitivity model M(
√

Γ) ⊆ R(Γ) ⊆M(Γ)

Inference Bounding p-value CI for ATE/ATT

Effect modification Constant effect Allow for heterogeneity

Extension
Carefully developed for
observational studies

Can be applied to
missing data problems
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Example

Fish consumption and blood mercury

I 873 controls: ≤ 1 serving of fish per month.

I 234 treated: ≥ 12 servings of fish per month.

I Covariates: gender, age, income (very imblanced), race, education,
ever smoked, # cigarettes.

Implementation details

I Rosenbaum’s method: 1-1 matching, CI constructed by
Hodges-Lehmann (assuming causal effect is constant).

I Our method (percentile Bootstrap): stabilized IPW for ATT w/wo
augmentation by outcome linear regression.
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Results

I Recall that M(
√

Γ) ⊆ R(Γ) ⊆M(Γ).
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Figure: The solid error bars are the range of point estimates and the dashed error bars
(together with the solid bars) are the confidence intervals. The
circles/triangles/squares are the mid-points of the solid bars.
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Discussion: The general sensitivity analysis problem

Optimization Percentile Bootstrap Minimax inequality

Extrema estimator ============⇒ Confidence interval

The percentile bootstrap idea can be extended to the following problem:

max or min E[f (X , θ, h(X ))],

subject to ‖h(x)‖∞ ≤ γ,

where f is a functional of the observed data X , some finite-dimensional
nuisance parameter θ, and a sensitivity function h(X ), as long as

I θ is “estimable” given X and h;

I Bootstrap “works” for En[f (X , θ̂, h(X ))], given h.

The challenges...

1. How to solve the sample verision of the optimization problem?

2. Can we allow infinite-dimensional θ?

3. Can we include additional constraints such as E[g(X , θ, h(X ))] ≤ 0?
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