MBI Videos

Videos by Workshop 3: Integrating Modalities and Scales in Life Science Imaging

  • Integrating multi-modal quantitative MRI and histology for improving surgical treatment of epilepsy
    Ali Khan

    Drug-resistant epilepsy occurs in over one third of epilepsy patients, and surgical excision of the affected brain region is often necessary to achieve seizure control. However, precise delineation of the seizure onset zone can be challenging, and can lead to poor surgical outcomes when incorrect. In many of these cases, the underlying pathology consists of subtle...

  • Three Dimensional Conduction During Atrial Fibrillation (a modeling approach)
    Ali Gharaviri

    Several mechanisms have been suggested to explain the increasing stability of atrial fibrillation (AF) over time. Disruption of electrical coupling between muscle bundles, resulting in narrower and thus more fibrillation waves, is considered as one of the main mechanisms contributing to AF stability in structurally remodeled atria. Also, the anatomy of the atrial ...

  • Forward Modeling of Medical Imaging Systems
    Paul Kinahan

    In medical imaging, the true underlying property of interest is unknown. A single image provides little to no insight into the impact of confounding factors such as: statistical noise, biological variability, scattered radiation, patient motion, deadtime in detectors and electronics, detector resolution, etc. Some of these physical factors can be quantified by sca...

  • How Can We Use Dynamic Models in Inverse Bioelectric Problems?
    Dana Brooks

    Both cardiac and brain bioelectric forward problems can be modeled accurately as quasi-static, implying that torso or scalp surface measurements depend on the spatial distribution of the respective sources independently at each time instant. However in both cases the time courses of the sources are in large part a function of intrinsic electrophysiological dynamic...

  • Optical imaging of the heart
    Bastiaan Boukens

    Mathematical modeling is of crucial importance for understanding the complexity of biological systems. Where biological experiments educate us about nature itself, mathematical models allow us to make prediction on the outcome of events based on current theories and hypotheses. In the field of cardiology, modeling has an important role in forward and inverse calcu...

  • MBI COLLOQUIUM: In Vivo Imaging of the Developing Mouse Brain: From Morphology to Molecules
    Daniel Turnbull

    Extensive genetic information and the expanding number of techniques available to manipulate the genome of the mouse have led to its widespread use in studies of brain development and to model human neurodevelopmental diseases. We are developing a combination of ultrasound and magnetic resonance micro-imaging approaches with sufficient resolution and sensitivity t...

  • Biofuel cell polarization estimation: inversion of electrochemical impedance spectroscopic measurements Importantance of Model Formulation
    Rosemary Renaut

    The inverse problem associated with electrochemical impedance spectroscopy requiring the solution of a Fredholm integral equation of the first kind is considered. If the underlying physical model is not clearly determined, the inverse problem needs to be solved using a regularized linear least squares problem that is obtained from the discretization of the integra...

  • Anatomically accurate multiscale-multiphysics models of total cardiac function
    Gernot Plank

    Despite the overwhelming wealth of data available today, gaining mechanistic insight into cardiac function remains to be a challenging endeavour due to the multiscale/multiphysics nature of cardiac function, where complex interactions of processes arise within and across levels of organization, as well as between electrical, mechanical and fluidic systems. Compute...

View Videos By