MBI administers a multi-institution summer REU (Research Experiences for Undergraduates) program in the mathematical biosciences each year. The objectives of the program are: (1) to introduce a diverse cohort of undergraduate students to the mathematical biosciences, broadly interpreted to include areas such as biostatistics, bioinformatics, and computational biology, in addition to biologically-inspired mathematical modeling; (2) to encourage students to pursue graduate study in the mathematical biosciences; and (3) to increase the number of students who enter the workforce with training in this field.
REU participants work on projects in areas such as molecular evolution, neuronal oscillatory patterning, cancer genetics, epidemics and vaccination strategies, and animal movement. Participants work individually or in pairs under the guidance of expert mentors to make specific research contributions in these areas, often leading to a peer-reviewed publication and conference presentations. The REU program incorporates various professional and research-skills development activities throughout the summer to help ensure the participants’ success in completing their summer project and to prepare them for graduate study or entering the workforce.
Due to the ongoing COVID-19 Pandemic, the 2020 Summer REU Program is being administered in a virtual environment.
This year's virtual program consists of three parts:
- Mathematical Biosciences Bootcamp (June 8th - 12th, 2020) at MBI
Participants are introduced to their projects and various areas of the mathematical biosciences via virtual talks. Participants familiarize themselves with their projects and present on their topics and the approaches they expect to take.
- Mentored Research Experience (June 15th - July 31st, 2020) Participants complete a mentored research project individually or in pairs working virtually with their project mentors. Participants also attend a weekly online seminar series and virtual all-program meeting.
- Capstone Week (August 4th - 5th, 2020) at MBI
A virtual wrap-up week featuring student talks, keynote talks by prominent mathematical and biological scientists, and Q&A panels.
The MBI Summer REU Program uses the REU Common Application system. MBI is participating in the REU Common Reply Date, meaning that we will not require applicants to accept or decline an offer to participate until March 8 or later.
Applications for the 2020 Summer REU Program are now closed.
Project Descriptions
Title: Models of Pattern Formation and Decision Making in Slime Mold
Advisors: Dr. Simon Garnier, Dr. Jason Graham
In a complex and dynamic world, how do you navigate your environment when you do not possess a brain, or even the beginnings of a nervous system? From bacteria and immune cells to fungi and plants, the large majority of living beings face this problem every day. Nevertheless our knowledge of decision-making mechanisms is mostly limited to those of neuronal animals, and in particular vertebrates. The goal of this project is for students to explore with University of Scranton Associate Professor Jason Graham and NJIT Associate Professor Simon Garnier the navigational abilities of a non-neuronal model organism: the slime mold Physarum polycephalum. Using models of morphogenesis, the students will study (1) how external and internal stimuli modify the morphology of this giant cell as it moves through its environment and (2) how this morphological changes result in the integration of noisy and contradictory information during decision-making by P. polycephalum. The students will also compare their results to experimental data collected by Garnier’s lab as part of an IOS NSF-funded research effort. The results of this work will help understand information processing in organisms without a brain, thereby advancing our comprehension of the emergence of cognitive processes in biological systems.
Title: Modeling and Simulation of Larval Fish Swimming
Advisors: Dr. Enkeleida Lushi, Dr. Kristen Severi
The student will construct a mathematical model for the swimming dynamics of larval zebrafish as seen in the experiments. The millimeter-long swimmers have complex behavior as they move in water, and it is influenced by the fluidic interactions with other larval fish, the presence of interfaces, as well as the introduction of light or food. These various interactions can result in intricate collective motion, especially in the presence of walls. The student will implement the equations into a computer simulation and compare the results to the experimental observations.
Title: Data Augmentation for Machine Learning
Advisors: Dr. Laura Kubatko, Dr. Marilyn Vazquez
Data augmentation is the task of increasing the amount of data available without collecting new data. This is important to applications where collecting data can be costly (e.g. labor intensive, time consuming, or requiring highly specialized machinery), but more data are needed to construct accurate machine learning models. Another very important application is in patient data privacy. Being able to produce a data set with similar characteristics to one collected from human subjects would enable analyses of the data with less risk of infringing upon patient privacy. In this project, we will explore various methods for data augmentation and will apply several methods to both real and simulated data. Student participating in this project will gain experience coding in Python, but no prior experience in this area is required.
Title: Detecting Shifts in the Evolutionary Process in SARS-CoV-2 Genomes
Advisor: Dr. Laura Kubatko, Mr. Sungsik (Kevin) Kong
Description: SARS-CoV-2, the virus that causes COVID-19, is a positive-sense single-stranded RNA virus, and is one of seven known coronaviruses to cause infection in humans. The RNA sequence of SARS-CoV-2 is just under 30,000 base pairs in length, and codes for four structural proteins, called N (nucleocapsid), S (spike), E (envelope), and M (membrane). Recent work has demonstrated that mutations in the sequence encoding the spike protein have resulted in increased affinity of the virus to bind with the angiotensin converting enzyme 2 (ACE2) receptor on human cells, thus allowing the infection to establish in the human host. In this project, we’ll investigate the use of a tool called SplitSup to identify regions of the SARS-CoV-2 genome that are undergoing shifts in the evolutionary process. SplitSup is a method that uses singular value decomposition of a data matrix that encodes observed frequencies of patterns in the RNA sequence data to quantify support for hypothesized evolutionary relationships among the sequences. Preliminary work has shown that SplitSup correctly identifies the spike protein as having recently undergone an evolutionary shift. This project will examine the more than 10,000 viral sequences in the Gisaid database to identify other genomic regions undergoing rapid evolutionary change.
Title: Modeling Local and Global Epidemics
Advisors: Dr. Greg Rempala, Dr. Eben Kenah
Description: The outbreak of COVID-19 has created a tremendous need for predicting both the dynamics and the size of regional COVID-19 outbreaks. Equally important is the need to determine the potential effects of early interventions such as school closures and mandatory or self-imposed quarantines. To answer these questions, we will develop a general mathematical framework for analyzing the ongoing outbreak trends using data solely from partially observed new daily infection counts (also known as the epidemic curve). The tools developed as part of this project will both help predict the rate of growth of new infections and estimate the effect of social distancing and other preventative measures on flattening the epidemic curve. We will use a new dynamical survival analysis approach to predict the trajectory of the epidemic using as an example COVID-19 data for the mid-western region of the United States. Data from elsewhere in the world, like the city of Wuhan in China, will be used to calibrate the predictions.
Bootcamp Schedule and Weekly Meetings
Time | Session |
---|---|
09:00 AM 09:30 AM |
Participant Introductions |
09:30 AM 10:00 AM |
Introduction to the REU program |
10:00 AM 10:30 AM |
Mentor talk group 1: Drs. Simon Garnier and Jason Graham, NJIT |
10:30 AM 11:00 AM |
Mentor talk group 2: Drs. Enkeleida Lushi and Kristen Severi, NJIT |
11:00 AM | Questions and Discussion |
Time | Session |
---|---|
09:00 AM 09:30 AM |
Mentor talk group 3: Drs. Greg Rempala and Eben Kenah, OSU |
09:30 AM 10:00 AM |
Mentor talk group 4: Drs. Marilyn Vazquez and Laura Kubatko, OSU |
10:00 AM 10:30 AM |
Mentor talk group 5: Dr. Laura Kubatko and Mr. Sungsik (Kevin) Kong, OSU |
10:30 AM | Questions, Discussion, and Charge for the Week |
Time | Session |
---|---|
09:00 AM 09:15 AM |
Group 1 Presentation |
09:15 AM 09:30 AM |
Group 2 Presentation |
09:30 AM 09:45 AM |
Group 3 Presentation |
09:45 AM 10:00 AM |
Group 4 Presentation |
10:00 AM 10:15 AM |
Group 5 Presentation |
10:15 AM | Questions, Discussion, and Schedule for the Week |
Time | Session |
---|---|
12:00 PM 01:00 PM |
Group Reports (~10 Minutes Each) |
01:00 PM 2:00 PM |
Guest Speaker (~30 Minute Talk + 30 Minutes for Q&A) |
Schedule of presentations for the MBI REU weekly seminar:
June 18 - Dr. Oksana Chkrebtii, Dept. of Statistics, Ohio State University
June 25 - Dr. Alexandria Volkening, NSF-Simons Center for Quantitative Biology, Northwestern University
July 2 - Dr. Scott McKinley, Dept. of Mathematics, Tulane University
July 9 - Dr. Rebecca Garabed, Dept. of Veterinary Preventive Medicine, Ohio State University
July 16 - Dr. Julia Aciero, Dept. of Mathematical Sciences, IUPUI
July 23 - Dr. Ian Hamilton, Evolution, Ecology and Organismal Biology/Mathematics, Ohio State University
July 30 - Dr. Punit Gandhi, Dept. of Mathematics and Applied Mathematics, VCU
Capstone Schedule (Aug. 4-5)
Time | Session |
---|---|
11:00 AM 11:45 AM |
Keynote Talk: How Quick and Easy Models Reveal Potential Pitfalls of Trying to Manage Wildlife Diseases without Understanding Host Immune Responses: Nina Fefferman (Ecology and Evolutionary Biology, The University of Tennessee) - As invasive/emerging diseases threaten wildlife populations, conservation efforts increasingly consider active disease intervention strategies ranging from vaccination to antimicrobial treatments. These interventions often fail to consider resulting impacts on natural host defense mechanisms and ongoing infection risks. In this talk, we’ll go through some models that rely on linear approximations of population demographics to show how this oversight might accidentally compound disease-related risks for threatened populations. While the theory applies generally, we will walk through an example case-study of interventions under active, current consideration in support of North American bat populations facing declines due to White-Nose Syndrome. There will be some linear algebra and lots of pictures of adorable bats in various stages of health. We'll end with a quick discussion of the role of math modeling in supporting policy decisions. |
12:00 PM 12:45 PM |
Grad Program Panel - Featuring: Mike Pennell (Department of Statistics, The Ohio State University), Jon Rubin (Department of Mathematics, Univ. of Pittsburgh), Fabio Milner (Mathematics and Statisitcal Sciences, Arizona State Univ.), and Maria Emelianenko (Dept. of Mathematical Sciences, George Mason University) |
01:00 PM 01:40 PM |
Student Talk Group 1 (Shelby Jansens and Kimberly Wiles): Detecting Shifts in the Evolutionary Process in SARS-CoV-2 Genomes |
01:40 PM 2:20 PM |
Student Talk Group 2 (Andrew Edwards and Jessica Wang) - Models of Pattern Formation and Decision Making in Slime Mold |
02:20 PM 3:00 PM |
Student Talk Group 3 (Amy Moore and Erika Fox) - Data Augmentation for Machine Learning |
Time | Session |
---|---|
11:00 AM 11:45 AM |
Career Panel - Featuring: Carolyn Cho (Merck), Dan Dougherty (Amyris, Inc.), Farrah Sadre-Marandi (qPharmetra), and Karly Jacobsen (NLP Logix) |
12:00 PM 12:45 PM |
Panel: What is Grad School Like? - Featuring: Matt Osborne (OSU, Mathematics), Nikki Schnitzler (OSU, Statistics), Greg Hawk (Univ. of Kentucky, Statistics), and Charles Ingulli (American Univ., Math and Stats) |
01:00 PM 01:40 PM |
Student Talk Group 4 (Keegan Kresge and Natalie Petruzelli) - Modeling Local and Global Epidemics |
01:40 PM 02:20 PM |
Student Talk Group 5 (Katherine Wall and Nathaniel Netznik) - Modeling and Simulation of Larval Fish Swimming |
02:20 PM | Wrap Up, Group Photo |
Participants
Name | Affiliation |
---|---|
Andrew Edwards | Valparaiso University |
Erika Fox | Montana State University |
Shelby Jansens | Ferris State University |
Keegan Kresge | Rochester Institute of Technology |
Amy Moore | Elon University |
Nathaniel Netznik | Pennsylvania State University - Harrisburg |
Natalie Petruzelli | Saint John Fisher College |
Katherine Wall | Brigham Young University - Provo |
Jessica Wang | University of Rochester |
Kimberly Wiles | Central Washington University |
This program is supported by the National Science Foundation Division of Mathematical Sciences (DMS) award number DMS-1757423.